【題目】如圖,四棱錐的底面是菱形,與交于點(diǎn),底面,點(diǎn)為線段中點(diǎn),.
(1)求直線與所成角的正弦值;
(2)求平面與平面所成二面角的正弦值.
【答案】(1)(2)
【解析】
(1)建立空間坐標(biāo)系分別求得直線DP和BM的方向向量,進(jìn)而得到異面直線的夾角;(2)分別求兩個(gè)平面的法向量,再由向量夾角的計(jì)算公式得到結(jié)果.
(1)因?yàn)?/span>是菱形,所以.又底面,以為原點(diǎn),直 分別為軸,軸,軸,建立如圖所示空間直角坐標(biāo)系.
則,,,,,.
所以,,,
,.
則
故直線與所成角的余弦值為.
直線與所成角的正弦值為.
(2),..
設(shè)平面的一個(gè)法向量為,
則,得,令,得,.
得平面的一個(gè)法向量為
又,
設(shè)平面的一個(gè)法向量為,
得,令,得,.
得平面的一個(gè)法向量為.
所以,,.
則
故平面與平面所成二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的離心率為,且過點(diǎn)(1,).
(1)求橢圓C的方程;
(2)設(shè)與圓O:x2+y2=相切的直線l交橢圓C于A,B兩點(diǎn),求△OAB面積的最大值,及取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)求實(shí)數(shù),使得函數(shù)在區(qū)間上的值域?yàn)?/span>;
(3)若函數(shù)在區(qū)間上的值域?yàn)?/span>,則記所有滿足條件的區(qū)間的并集為,設(shè),問是否存在實(shí)數(shù),使得集合恰含有個(gè)元素?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面為矩形,,,為棱的中點(diǎn),與交于點(diǎn),側(cè)面,為的中點(diǎn).
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜三棱柱的側(cè)面與底面垂直,,,且,,求:
(1)側(cè)棱與底面所成角的大小;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人們的生活水平也同步上升,許許多多的家庭對(duì)于資金的管理都有不同的方式。最新調(diào)查表明,人們對(duì)于投資理財(cái)?shù)呐d趣逐步提高。某投資理財(cái)公司做了大量的數(shù)據(jù)調(diào)查,調(diào)查顯示兩種產(chǎn)品投資收益如下:
①投資產(chǎn)品的收益與投資額的算術(shù)平方根成正比;
②投資產(chǎn)品的收益與投資額成正比.
公司提供了投資1萬元時(shí)兩種產(chǎn)品的收益,分別是0.4萬元和0.2萬元。
(1) 分別求出產(chǎn)品的收益、產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2) 假如現(xiàn)在你有10萬元的資金全部用于投資理財(cái),你該如何分配資金,才能讓你的收益最大?最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國(guó)式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國(guó)式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
項(xiàng)目 | 男性 | 女性 | 總計(jì) |
反感 | 10 | ||
不反感 | 8 | ||
總計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過馬路”的路人的概率是.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(直接寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國(guó)式過馬路”與性別是否有關(guān)?
(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國(guó)式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20世紀(jì)30年代,里克特(C.F.Richter)制定了一種表明地震能量大小的尺度,就是使用測(cè)震儀地震能量的等級(jí),地震能量越大,測(cè)震儀記錄的地震曲線的振幅就越大,這就是我們常說的里氏震級(jí)M,其計(jì)算公式為其中,A是被測(cè)量地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅(使用標(biāo)準(zhǔn)地震振幅是為了修正測(cè)震儀距實(shí)際的距離造成的偏差),眾所周知,5級(jí)地震已經(jīng)比較明顯,計(jì)算8級(jí)地震的最大振幅是5級(jí)地震的最大振幅的______倍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com