精英家教網 > 高中數學 > 題目詳情

【題目】已知實數x,y滿足 ,若目標函數z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實數m的取值范圍是(
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]

【答案】A
【解析】解:作出不等式組對應的平面區(qū)域如圖:(陰影部分ABC).

由目標函數z=﹣mx+y得y=mx+z,

則直線的截距最大,z最大,直線的截距最小,z最。

∵目標函數z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,

∴當目標函數經過點(2,10)時,取得最大,

當經過點(2,﹣2)時,取得最小值,

∴目標函數z=﹣mx+y的目標函數的斜率m滿足比x+y=0的斜率大,比2x﹣y+6=0的斜率小,

即﹣1≤m≤2,

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)是定義在(﹣∞,0)上的可導函數,其導函數為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為(
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=f(x)在R上可導且滿足不等式xf′(x)+f(x)>0恒成立,且常數a,b滿足a>b,則下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga(x﹣1),g(x)=loga(6﹣2x)(a>0且a≠1).
(1)求函數φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,斜率為 的動直線l與橢圓C交于不同的兩點A,B.
(1)設M為弦AB的中點,求動點M的軌跡方程;
(2)設F1 , F2為橢圓C在左、右焦點,P是橢圓在第一象限上一點,滿足 ,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC= AA1=1,D是棱AA1上的點,DC1⊥BD
(Ⅰ)求證:D為AA1中點;
(Ⅱ)求直線BC1與平面BDC所成角正弦值大;
(Ⅲ)在△ABC邊界及內部是否存在點M,使得B1M⊥面BDC,存在,說明M位置,不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=ksin(kx+φ)( )與函數y=kx﹣k2+6的部分圖象如圖所示,則函數f(x)=sin(kx﹣φ)+cos(kx﹣φ)圖象的一條對稱軸的方程可以為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某沿海四個城市A,B,C,D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,AD=70 nmile,D位于A的北偏東75°方向.現在有一艘輪船從A出發(fā)向直線航行,一段時間到達D后,輪船收到指令改向城市C直線航行,收到指令時城市C對于輪船的方位角是南偏西θ度,則sinθ=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ax(a>0),設
(1)判斷函數h(x)=f(x)﹣g(x)零點的個數,并給出證明;
(2)首項為m的數列{an}滿足:①an+1+an ;②f(an+1)=g(an).其中0<m< .求證:對于任意的i,j∈N* , 均有ai﹣aj ﹣m.

查看答案和解析>>

同步練習冊答案