【題目】如圖,在四棱錐P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1, .
(1)求證:PA⊥平面PBC;
(2)若點M在棱PB上,且PM:MB=3,求證CM∥平面PAD.
【答案】
(1)證明:∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,BC⊥AB,
∴BC⊥平面PAB,又PA平面PAB,
∴BC⊥PA,
又PA⊥PB,PB∩BC=B,PB平面PBC,BC平面PBC,
∴PA⊥平面PBC.
(2)在AB上取點N,使得AN:BN=3,取AB的中點O,連結(jié)MN,CN,PO,OD,
∵ ,
∴MN∥PA.
由(1)知BC⊥平面PAB,∴BC⊥BN,
∵BN= AB= ,BC=1,∴tan∠BNC= .
∵AD=BD= ,AB=2,O是AB的中點,
∴OD⊥AB,OA=1,OD= =2,
∴tan∠OAD= ,
∴∠BNC=∠OAD,∴CN∥AD,
又MN∩CN,PA∩AD=A,
∴平面MNC∥平面PAD.
又∵CM平面MNC,
∴CM∥平面PAD.
【解析】(1)先利用面面垂直的性質(zhì)定理可證BC⊥平面PAB,進而可證BC⊥PA,再利用線面垂直的判定定理可證PA⊥平面PBC;(2)先在AB上取點N,使得AN:BN=3,取AB的中點O,連結(jié)MN,CN,PO,OD,進而可證MN∥PA,再證CN∥AD,進而可證平面MNC∥平面PAD,從而可證CM∥平面PAD.
【考點精析】關(guān)于本題考查的直線與平面平行的判定和平面與平面垂直的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按如圖所示的程序框圖操作: (Ⅰ)寫出輸出的數(shù)所組成的數(shù)集.若將輸出的數(shù)按照輸出的順序從前往后依次排列,則得到數(shù)列{an},請寫出數(shù)列{an}的通項公式;
(Ⅱ)如何變更A框內(nèi)的賦值語句,使得根據(jù)這個程序框圖所輸出的數(shù)恰好是數(shù)列{2n}的前7項?
(Ⅲ)如何變更B框內(nèi)的賦值語句,使得根據(jù)這個程序框圖所輸出的數(shù)恰好是數(shù)列{3n﹣2}的前7項?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣2alnx+(a﹣2)x,a∈R.
(1)當a=﹣1時,求函數(shù)f(x)的極值;
(2)當a<0時,討論函數(shù)f(x)單調(diào)性;
(3)是否存在實數(shù)a,對任意的m,n∈(0,+∞),且m≠n,有 >a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設(shè)備,從圓心O點出發(fā),在地下鋪設(shè)4條到A,B,C,D四點線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設(shè)的4條線路OA,OB,OC,OD總長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,體現(xiàn)了古代勞動人民的數(shù)學(xué)智慧,其中第六章“均輸”中,有一竹節(jié)容量問題,某人根據(jù)這一思想,設(shè)計了如圖所示的程序框圖,若輸出m的值為35,則輸入的a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E,F(xiàn)分別為弦AB與弦AC上的點,且BCAE=DCAF,B,E,F(xiàn),C四點共圓.證明:CA是△ABC外接圓的直徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,已知平面PBC⊥平面ABC.
(1)若AB⊥BC,CP⊥PB,求證:CP⊥PA:
(2)若過點A作直線l⊥平面ABC,求證:l∥平面PBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年5月17日為國際電信日,某市電信公司每年在電信日當天對辦理應(yīng)用套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D是直角ABC斜邊BC上一點,AC= DC,
(Ⅰ)若∠DAC=30°求角B的大小;
(Ⅱ)若BD=2DC,且 AD=2 ,求DC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com