【題目】已知f(α)=.
(1)化簡(jiǎn)f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
【答案】(1)f(α)=sinα·cosα.(2)cosα-sinα=-. (3) -
【解析】
(1)根據(jù)三角函數(shù)的誘導(dǎo)公式化簡(jiǎn),得,即可得到答案;
(2)由(1)知,再根據(jù)同角三角函數(shù)的基本關(guān)系式,即可求解.
(3)由,代入,利用誘導(dǎo)公式和特殊角的三角函數(shù)值,即可求解.
(1)f(α)==sinα·cosα.
(2)由f(α)=sinαcosα=可知
(cosα-sinα)2=cos2α-2sinαcosα+sin2α=1-2sinαcosα=1-2×=.
又∵<α<,∴cosα<sinα,即cosα-sinα<0.
∴cosα-sinα=-.
(3)∵α=-=-6×2π+,
∴f(-)=cos(-)·sin(-)=cos(-6)·sin(-6)
=cos·sin=cos(2π-)·sin(2π-)=cos·
=·(-)=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成底邊為,頂角為的等腰三角形.
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上三動(dòng)點(diǎn),且,線段的中點(diǎn)為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象中相鄰兩條對(duì)稱(chēng)軸之間的距離為,且直線是其圖象的一條對(duì)稱(chēng)軸.
(1)求,的值;
(2)在圖中畫(huà)出函數(shù)在區(qū)間上的圖象;
(3)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位,得到的圖象,求單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn)
(1)求曲線、的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線上的兩個(gè)點(diǎn)且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】打贏扶貧攻堅(jiān)戰(zhàn),到2020年全面建成小康社會(huì),是中國(guó)共產(chǎn)黨向全世界和全國(guó)人民的承諾.一貧困戶在政府扶持下結(jié)合地方特色聯(lián)合當(dāng)?shù)貛讘糌毨魟?chuàng)辦一家農(nóng)產(chǎn)品公司.為了振興鄉(xiāng)村,打好扶貧攻堅(jiān)戰(zhàn),某市黨政府開(kāi)展了地標(biāo)特產(chǎn)展銷(xiāo)會(huì).該公司擬定在2020年元旦展銷(xiāo)期間舉行產(chǎn)品促銷(xiāo)活動(dòng),經(jīng)測(cè)算該產(chǎn)品的年銷(xiāo)量t萬(wàn)件(生產(chǎn)量與銷(xiāo)量相等)與促銷(xiāo)費(fèi)用x萬(wàn)元滿足已知2020年生產(chǎn)該產(chǎn)品還需投入成本4+t萬(wàn)元(不含促銷(xiāo)費(fèi)),促銷(xiāo)費(fèi)x滿足當(dāng)產(chǎn)品銷(xiāo)量?jī)r(jià)格定為5元/件,當(dāng)產(chǎn)品銷(xiāo)量?jī)r(jià)格定為元/件(其中a為正常數(shù)).
(1)試將2020年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷(xiāo)費(fèi)費(fèi)x萬(wàn)元的函數(shù);
(2)2020年該公司促銷(xiāo)費(fèi)投入多少萬(wàn)元時(shí),公司利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線為.
()若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.
()若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果是拋物線上的點(diǎn),它們的橫坐標(biāo)依次為,是拋物線的焦點(diǎn),若,則_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為和.
(I)求橢圓的方程
(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線與橢圓 交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com