已知數(shù)學(xué)公式(a∈R,a為常數(shù)).
(1)若f(x)為奇函數(shù),求a的值;
(2)若x∈R,求f(x)的最小正周期;
(3)若x∈[0,數(shù)學(xué)公式時(shí),f(x)的最大值為4,求a的值.

解:(1)=3sinx-sinx-sinx+a=sinx+a
∵f(x)為奇函數(shù),∴f(-x)=-f(x)
∴sin(-x)+a=-sinx-a,∴a=0;
(2)T=2π;
(3)∵x∈[0,,∴sinx∈[0,1]
∴f(x)的最大值為1+a
∵f(x)的最大值為4,
∴1+a=4,∴a=3.
分析:(1)利用誘導(dǎo)公式化簡函數(shù),利用奇函數(shù)的定義,可求a的值;
(2)根據(jù)周期公式,可求f(x)的最小正周期;
(3)利用正弦函數(shù)的性質(zhì),確定x∈[0,時(shí),f(x)的最大值,即可求a的值.
點(diǎn)評:本題考查三角函數(shù)的化簡,考查函數(shù)的奇偶性,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求a實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求a實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)新題型解析選編(7)(解析版) 題型:解答題

已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求a實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案