已知圓G:經(jīng)過橢圓的右焦點F及上頂點B.過橢圓外一點且傾斜角為的直線交橢圓于C、D兩點.

(1) 求橢圓方程;

(2) 若右焦點F在以CD為直徑的圓E的內(nèi)部,求的取值范圍。

 

【答案】

(1)(2) <m<

【解析】本試題主要是考查了橢圓方程的求解,以及直線與橢圓的位置關(guān)系的綜合運用。聯(lián)立方程組結(jié)合判別式得到參數(shù)的范圍。

(1)依據(jù)題意可求得F,B的坐標,求得c和b,進而求得a,則橢圓的方程可得

2)設(shè)出直線l的方程,與橢圓方程聯(lián)立消去,利用判別式大于0求得m的范圍,設(shè)出C,D的坐標,利用韋達定理表示出x1+x2和進而利用直線方程求得y1y2,表示出FC

和 FD ,進而求得 FC • FD 的表達式,利用F在圓E的內(nèi)部判斷出 FC • FD <0求得m的范圍,最后綜合可求得m范圍

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點F及上頂點B,過橢圓外一點(m,0)(ma)且傾斜角為
5
6
π
的直線l交橢圓于C,D兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F及上頂點B.過點M(m,0)作傾斜角為
5
6
π
的直線l交橢圓于C、D兩點.
(1)求橢圓的方程;
(2)若點Q(1,0)恰在以線段CD為直徑的圓的內(nèi)部,求實數(shù)m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)三模)已知圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F及上頂點B.
(1)求橢圓的方程;
(2)過橢圓外一點M(m,0)(m>a)傾斜角為
5
6
π
的直線l交橢圓于C、D兩點,若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓G:x2+y2-2
2
x-2y=0經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F及上頂點B.
(1)求橢圓的方程;
(2)過橢圓外一點M(m,0)(m>a)傾斜角為
2
3
π
的直線l交橢圓于C、D兩點,若點N(3,0)在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案