【題目】如圖,在斜三棱柱 中,∠BAC=90°,BC1⊥AC,則點C1在平面ABC上的射影H必在( )

A.直線AB上
B.直線BC上
C.直線AC上
D.△ABC的內(nèi)部

【答案】A
【解析】因為BC1⊥AC,AB⊥AC,BC1∩AB=B,所以AC⊥平面ABC1.
又AC平面ABC,所以平面ABC⊥平面ABC1.
又平面ABC∩平面ABC1=直線AB,
所以過點C1作C1H⊥平面ABC,則H∈AB,
即點C1在平面ABC上的射影H在直線AB上.
所以答案是:A.
【考點精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定和直線與平面垂直的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;垂直于同一個平面的兩條直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐A﹣BCD中AB=AC=1,DB=DC=2,AD=BC= ,則三棱錐A﹣BCD的外接球的表面積為(
A.π
B.
C.4π
D.7π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3ax2+3x+1,當x∈[2,+∞),f(x)≥0恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)問卷調(diào)查,某班學(xué)生對攝影分別執(zhí)“喜歡”“不喜歡”和“一般”三種態(tài)度,其中執(zhí)“一般”態(tài)度的比“不喜歡”的多12人,按分層抽樣方法從全班選出部分學(xué)生座談攝影,如果選出的是5位“喜歡”攝影的同學(xué)、1位“不喜歡”攝影的同學(xué)和3位執(zhí)“一般”態(tài)度的同學(xué),那全班學(xué)生中“喜歡”攝影的比全班學(xué)生人數(shù)的一半還多人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則將f(x)的圖象向右平移 個單位所得曲線的一條對稱軸的方程是(
A.x=π
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2表,并判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

下面臨界值表僅供參考:

P(x2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.79

10.828

(參考公式:x2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列各曲線的標準方程
(1)實軸長為12,離心率為 ,焦點在x軸上的橢圓;
(2)焦點是雙曲線16x2﹣9y2=144的左頂點的拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ (x>0)過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N,設(shè)g(t)=|MN|,若對任意的正整數(shù)n,在區(qū)間[2,n+ ]內(nèi),若存在m+1個數(shù)a1 , a2 , …am+1 , 使得不等式g(a1)+g(a2)+…g(am)<g(am+1),則m的最大值為(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為2,若將正方形ABCD沿對角線BD折疊為三棱錐 ,則在折疊過程中,不能出現(xiàn)( )
A.
B.平面 平面CBD
C.
D.

查看答案和解析>>

同步練習(xí)冊答案