Processing math: 27%
6.已知函數(shù)f(x)=x+mx,且此函數(shù)圖象過(guò)點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值;
(2)設(shè)二次函數(shù)g(x)滿足g(m)=15,且對(duì)任意實(shí)數(shù)x都有g(shù)(x+2)-g(x)=4x+2,求g(x)的解析式.

分析 (1)根據(jù)題意函數(shù)f(x)=x+mx,此函數(shù)圖象過(guò)點(diǎn)(1,5),帶入計(jì)算即可求m的值.
(2)由題意,g(x)為二次函數(shù),設(shè)出解析式,g(m)=15,且對(duì)任意實(shí)數(shù)x都有g(shù)(x+2)-g(x)=4x+2,建立關(guān)系,待定系數(shù)法求解即可.

解答 解:(1)由題意:函數(shù)f(x)=x+mx,此函數(shù)圖象過(guò)點(diǎn)(1,5),
∴5=1+m
解得:m=4.
故得實(shí)數(shù)m的值為4.
由題意,g(x)為二次函數(shù),設(shè)g(x)=ax2+bx+c,(a≠0)
∵g(m)=15,g(x+2)-g(x)=4x+2,
可得:{16a+4b+c=15ax+22+bx+2+cax2+bx+c=4x+2
解得:a=1,b=-1,c=3
所以:g(x)的解析式.g(x)=x2-x+3.

點(diǎn)評(píng) 本題考查了函數(shù)的帶值計(jì)算和利用待定系數(shù)法求解析式.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等差數(shù)列{an}滿足a3=3,a5=9;數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足1=12=3Sn+1=4Sn3Sn1n2nN
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若對(duì)任意的nNSn+12?kan恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直線坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,直線l過(guò)點(diǎn)A(1,2),且傾斜角為\frac{π}{4}
(1)求直線l的參數(shù)方程及圓C的直角坐標(biāo)方程;
(2)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=\left\{{\begin{array}{l}{{3^x}-1,x≤1}\\{f(x-1),x>1}\end{array}}\right.,則f(f(2))=2,函數(shù)f(x)的零點(diǎn)有1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列五個(gè)命題中,
①若數(shù)列{an}的前n項(xiàng)和為Sn=3n-2,則該數(shù)列為等比數(shù)列;
②若m≥-1,則函數(shù)y=log{\;}_{\frac{1}{3}}(x2-2x-m)的值域?yàn)镽;
③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱(chēng);
④已知向量\overrightarrow{a}=(-2,-1)與\overrightarrow=(λ,1)A的夾角為鈍角,則實(shí)數(shù)λ取值范圍是(-\frac{1}{2},+∞);
⑤母線長(zhǎng)為2,底面半徑為\sqrt{3}的圓錐,過(guò)頂點(diǎn)的一個(gè)截面面積的最大值為\sqrt{3}
其中正確命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\},B=\left\{{\left.y\right|y=2-\frac{1}{{{x^2}+1}}}\right\},則A∩B=( �。�
A.[1.2]B.(1.2]C.[1.2)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.從5名女同學(xué)和4名男同學(xué)中選出4人參加演講比賽,
(1)男、女同學(xué)各2名,有多少種不同選法?
(2)男、女同學(xué)分別至少有1名,且男同學(xué)甲與女同學(xué)乙不能同時(shí)選出,有多少種不同選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求經(jīng)過(guò)點(diǎn)A(-3,2),且與\frac{x^2}{9}+\frac{y^2}{4}=1有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在斜△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,A=\frac{π}{4},sinA+sin(B-C)=2\sqrt{2}sin2C,且△ABC的面積為1,則a的值為( �。�
A.2B.\sqrt{5}C.\sqrt{6}D.\sqrt{7}

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭