【題目】已知橢圓()經(jīng)過與兩點.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點,橢圓上一點滿足,求證: 為定值.
【答案】(1);(2)見解析.
【解析】試題分析:
(1)由題意將點的坐標(biāo)代入橢圓方程即可求得橢圓的方程為;
(2)利用(1)中求得的橢圓方程結(jié)合題意分類討論可證得為定值2.
試題解析:
(1)將 與(,)兩點代入橢圓C的方程,
得解得. ∴橢圓PM2的方程為.
(2)由|MA|=|MB|,知M在線段AB的垂直平分線上,由橢圓的對稱性知A、B關(guān)于原點對稱.
①若點A、B是橢圓的短軸頂點,則點M是橢圓的一個長軸頂點,此時
=.
同理,若點A、B是橢圓的長軸頂點,則點M在橢圓的一個短軸頂點,此時
=.
②若點A、B、M不是橢圓的頂點,設(shè)直線l的方程為y=kx(k≠0),
則直線OM的方程為,設(shè)A(x1,y1),B(x2,y2),
由解得,,
∴=,同理,
所以=2×+=2,
故=2為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗的方法調(diào)查高中生性別與愛好某項運(yùn)動是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項運(yùn)動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
C. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下幾個命題中:
①線性回歸直線方程恒過樣本中心;
②用相關(guān)指數(shù)可以刻畫回歸的效果,值越小說明模型的擬合效果越好;
③隨機(jī)誤差是引起預(yù)報值和真實值之間存在誤差的原因之一,其大小取決于隨機(jī)誤差的方差;
④在含有一個解釋變量的線性模型中,相關(guān)指數(shù)等于相關(guān)系數(shù)的平方.
其中真命題為 _________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,正三角形PAC所在平面與等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中點,OH⊥PC于H.
(1)證明:PC⊥平面BOH;
(2)若,求二面角A-BH-O的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是( )
A. 從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;
B. 2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;
C. 2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番 ;
D. 為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求常數(shù)k的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值;
(3)設(shè),且, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,平面,,,,分別是,的中點.
(1)求證:;
(2)設(shè)為線段上的動點,若線段長的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,設(shè)為導(dǎo)函數(shù).
(Ⅰ)設(shè),若恒成立,求的范圍;
(Ⅱ)設(shè)函數(shù)的零點為,函數(shù)的極小值點為,當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)討論的單調(diào)性;
(II)當(dāng),是否存在實數(shù),使得,都有?若存在求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com