【題目】已知數(shù)列滿足:,,其中,數(shù)列滿足:
(1)當時,求的值;
(2)證明:對任意均成立,并求數(shù)列的通項公式;
(3)是否存在正數(shù),使得數(shù)列的每一項均為整數(shù),如果不存在,說明理由,如果存在,求出所有的.
【答案】(1),,,;(2)證明見解析,;(3).
【解析】
(1)根據(jù)計算得到,,,再根據(jù)與的關(guān)系,得到答案;(2)由條件可得,然后得到,兩式相減,從而進行證明,并以根據(jù)所證的式子可得到的通項;(3)假設存在正數(shù),由(2)可知,由,得到,再利用數(shù)學歸納法進行證明滿足題意.
(1),所以,
時,時
時,
而
所以,,,;
(2)因為,
所以,
所以
下式減上式,得,
整理得
即有,
所以,
,
所以;
(3)假設存在正數(shù),使得數(shù)列的每一項均為整數(shù),
由(2)可知①,
由,,可得,
當時,為整數(shù),利用,
結(jié)合①式,反復遞推,可知每一項均為整數(shù),所以符合題意,
當時,①式變?yōu)?/span>②
下用數(shù)學歸納法證明為偶數(shù),為整數(shù)
時,結(jié)論顯然成立,
假設時,結(jié)論成立,此時為偶數(shù),為整數(shù),
故時,為偶數(shù),為整數(shù),
所以時,命題也成立.
所以數(shù)列為整數(shù)數(shù)列.此時滿足題意.
綜上所述,滿足題意的的取值集合為.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校組織高考組考工作,為了搞好接待組委會招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表;并要求列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過的前提下認為性別與喜愛運動有關(guān)?
喜愛運動 | 不喜愛運動 | 總計 | |
男 |
| ||
女 |
|
| |
總計 |
|
(2)如果從喜歡運動的女志愿者中(其中恰有人會外語),抽取名負責翻譯工作,則抽出的志愿者中人恰有一人勝任翻譯工作的概率是多少?
參考公式:,其中.
參考答數(shù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,設直線與軸的交點為,過點且斜率為的直線與橢圓交于兩點,為線段的中點.
(1)若直線的傾斜角為,求的值;
(2)設直線交直線于點,證明:直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在第十五次全國國民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.
(1)填寫下面列聯(lián)表,并判斷是否有的把握認為,經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計 |
(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出人,參加一次閱讀交流活動,若活動主辦方從這位居民中隨機選取人作交流發(fā)言,求被選中的位居民都是經(jīng)常閱讀居民的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高中年級開設了豐富多彩的校本課程,甲、乙兩班各隨機抽取了5名學生的學分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學生學分的標準差,則_______.(填“”“<”或“=”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com