已知焦點(diǎn)在軸上的橢圓的離心率為,它的長(zhǎng)軸長(zhǎng)等于圓的半徑,則橢圓的標(biāo)準(zhǔn)方程是( )
A. B. C. D.
D
【解析】
試題分析:圓的方程化成標(biāo)準(zhǔn)形式為:所以因?yàn)殡x心率所以又因?yàn)闄E圓焦點(diǎn)在軸上,所以橢圓的標(biāo)準(zhǔn)方程為:.
考點(diǎn):本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法和圓的方程的認(rèn)識(shí),考查學(xué)生的運(yùn)算求解能力.
點(diǎn)評(píng):求橢圓的標(biāo)準(zhǔn)方程,應(yīng)該知道焦點(diǎn)在哪個(gè)坐標(biāo)軸上,再求標(biāo)準(zhǔn)方程中的基本量,其中往往少不了離心率的計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年廈門(mén)外國(guó)語(yǔ)學(xué)校模擬)(12分)
已知焦點(diǎn)在軸上的橢圓是它的兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓上存在一點(diǎn)P,使得試求的取值范圍;
(Ⅱ)若橢圓的離心率為,經(jīng)過(guò)右焦點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省安慶市高三模擬考試(三模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知焦點(diǎn)在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們?cè)诘谝幌笙藿稽c(diǎn)的坐標(biāo)為,設(shè)直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題
(本題滿分15分)已知焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且離心率為,為橢圓的左頂點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn).
(。┤糁本垂直于軸,求的大小;
(ⅱ)若直線與軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年黑龍江省高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:選擇題
1. 已知焦點(diǎn)在軸上的橢圓的兩個(gè)焦點(diǎn)分別為, 且,弦過(guò)焦點(diǎn),則的周長(zhǎng)為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com