【題目】已知數列:2,0,2,0,2,0,….前六項不適合下列哪個通項公式 ( )
A. =1+(―1)n+1
B. =2|sin |
C. =1-(―1)n
D. =2sin
【答案】D
【解析】解答:對于選項A,an=1+(-1)n+1取前六項得2,0,2,0,2,0滿足條件;
對于選項B,an=2| |取前六項得2,0,2,0,2,0滿足條件;
對于選項C,an=1-(-1)n取前六項得2,0,2,0,2,0滿足條件;
對于選項D,an=2 取前六項得2,0,-2,0,2,0不滿足條件;
故選D.分析:本題主要考查了數字變化的規(guī)律,根據數字之間的聯(lián)系,能夠掌握其內在規(guī)律即可.
【考點精析】認真審題,首先需要了解數列的定義和表示(數列中的每個數都叫這個數列的項.記作an,在數列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an).
科目:高中數學 來源: 題型:
【題目】若兩直線的傾斜角分別為 與,則下列四個命題中正確的是( )
A. 若<,則兩直線的斜率:k1 < k2 B. 若=,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).
(1)求甲、乙兩人成績的平均數和中位數;
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在公園游園活動中,有這樣一個游戲項目:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和2個黑球,這些球除顏色外完全相同.每次游戲都從這兩個箱子里各隨機地摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)
(1)求在每一次游戲中獲獎的概率;
(2)在三次游戲中,記獲獎次數為,求的概率分布和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的定義域為,,使得不等式成立,關于的不等式的解集記為.
(1)若為真,求實數的取值集合;
(2)在(1)的條件下,若是的充分不必要條件,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若0<a<b,且a+b=1,則下列各式中最大的是( )
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校或班級舉行活動,通常需要張貼海報進行宣傳,現(xiàn)讓你設計一張豎向張貼的海報, 要求版心面積為128 dm2 , 上、下兩邊各空2 dm,左右兩邊各空1 dm,張貼的長與寬尺
寸為( )才能使四周空白面積最。 )
A.20dm,10dm
B.12dm,9dm
C.10dm,8dm
D.8dm,5dm
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(1)求證:直線DE⊥平面PAC.
(2)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com