【題目】在如圖所示的五面體中,四邊形是矩形,平面平面,且, ,, ,點(diǎn)上.

求證:(1)平面

(2)平面 平面

【答案】詳見解析

【解析】

(1)先證明平面平面,進(jìn)而由面面平行可得線面平行;

(2)利用勾股定理的逆定理證明直線,由面面垂直的性質(zhì)得到平面,進(jìn)而可得平面,從而可得平面 平面.

證明:(1)連結(jié)DM

∵AB∥EF,AB=EF,M是EF的中點(diǎn),

∴AB∥EM且ABEM,四邊形ABEM是平行四邊形,

∴AM∥BE,又∵AM平面BCE,BE平面BCE,

∴AM∥平面BCE.∵四邊形ABCD是矩形,

∴AD∥BC,又BC平面BCE,AD平面BCE,∴AD∥平面BCE,

又AD平面ADM,AM平面ADM,AD∩AM=A,

∴平面ADM∥平面BCE,

又DN平面ADM,

∴DN∥平面BCE(2)由(1)知AM=BE=2,

∵AF=BE=2,MF=EF=

∴AM2+AF2=MF2,∴AM⊥AF.

∵平面ADF⊥平面ABEF,平面ADF∩平面ABEF=AF,AM平面ABEF,

∴AM⊥平面DAF,∵DA平面DAF,

∴AM⊥DA,

又∵四邊形ABCD是矩形,∴AD⊥AB,

∵AB平面ABEF,AM平面ABEF,AB∩AM=A,

∴AD⊥平面ABEF,又AD平面ABCD,

∴平面ABEF⊥平面ABCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題在區(qū)間上是減函數(shù);

命題q:不等式無解。

若命題“”為真,命題“”為假,求實(shí)數(shù)m 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(4)=f(﹣2)=1,f′(x)為f(x)的導(dǎo)函數(shù),且導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.則不等式f(x)<1的解集是( )

A. (﹣2,0)

B. (﹣2,4)

C. (0,4)

D. (﹣∞,﹣2)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報(bào)說,在今后的三天中,每天下雨的概率都為.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:用表示下雨,從下列隨機(jī)數(shù)表的第行第列的開始讀取,直到讀取了組數(shù)據(jù),

18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10

55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24

據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;

⑵當(dāng),求函數(shù)的最小值;

⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.

(1)求函數(shù),的解析式;

(2)設(shè)函數(shù),記 .探究是否存在正整數(shù),使得對(duì)任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)藥公司針對(duì)某種疾病開發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間的變化情況(如圖所示):當(dāng)時(shí),的函數(shù)關(guān)系式為為常數(shù));當(dāng)時(shí),的函數(shù)關(guān)系式為為常數(shù)).服藥后,患者體內(nèi)的藥物濃度為,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過最低中毒濃度,患者就會(huì)有危險(xiǎn).

(1)首次服藥后,藥物有療效的時(shí)間是多長?

(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)判斷并證明函數(shù)上的單調(diào)性;

2)當(dāng)時(shí),函數(shù)的最大值與最小值之差為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案