關(guān)于x的方程sin2x+2cosx+a=0有解,則a的取值范圍是
[-2,2]
[-2,2]
分析:令 t=cosx,t∈[-1,1],故方程t2-2t-a-1=0 在[-1,1]上有解,再根函數(shù)的單調(diào)性可得f(-1)≥0,
且f(1)≤0,解不等式求得a的取值范圍.
解答:解:關(guān)于x的方程sin2x+2cosx+a=0有解,即-cos2x+2cosx+a+1=0 有解.令 t=cosx,t∈[-1,1],
故方程t2-2t-a-1=0 在[-1,1]上有解.又函數(shù)f(t)=t2-2t-a-1在[-1,1]上單調(diào)遞減,
故f(-1)≥0,且f(1)≤0.  即 (-a+2)≥0,且 (-a-2)≤0,∴-2≤a≤2,
故答案為:[-2,2].
點(diǎn)評(píng):本題考查三角函數(shù)的最值,二次函數(shù)的性質(zhì),得到方程t2-2t-a-1=0 在[-1,1]上有解,是將誒提的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
,
b
=(
3
,2cosωx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
的圖象關(guān)于直線x=
π
2
對(duì)稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若將y=f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="80iatm1" class="MathJye">
1
6
,再將所得圖象向右平移
π
3
個(gè)單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上饒一模)請(qǐng)?jiān)谙铝袃深}中任選一題作答,(如果兩題都做,則按所做的第一題評(píng)分)
(A)曲線C1的極坐標(biāo)方程為ρsin2θ=cosθ,曲線C2的參數(shù)方程為
x=3-t
y+t=1
,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則曲線C1與曲線C2
2
2
個(gè)公共點(diǎn).
(B)關(guān)于x的不等式:|x-1|-|x-2|≤a的解集不是空集,則實(shí)數(shù)a的范圍為
a≥-1
a≥-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國(guó)各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

關(guān)于x的方程x2+x·sin2θ-sinθcotθ=0的兩根為α,β,且0<θ<2π,若數(shù)列1,(),,…的前100項(xiàng)和為0,

(文)求sinθ的值.

(理)求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
,
b
=(
3
,2cosωx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
的圖象關(guān)于直線x=
π
2
對(duì)稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若將y=f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span mathtag="math" >
1
6
,再將所得圖象向右平移
π
3
個(gè)單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江西省上饒市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

請(qǐng)?jiān)谙铝袃深}中任選一題作答,(如果兩題都做,則按所做的第一題評(píng)分)
(A)曲線C1的極坐標(biāo)方程為ρsin2θ=cosθ,曲線C2的參數(shù)方程為,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則曲線C1與曲線C2    個(gè)公共點(diǎn).
(B)關(guān)于x的不等式:|x-1|-|x-2|≤a的解集不是空集,則實(shí)數(shù)a的范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案