精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)如圖,四棱錐的底面為矩形,且,
,

(Ⅰ)平面與平面是否垂直?并說明理由;
(Ⅱ)求直線與平面所成角的正弦值.

(I)見解析;(Ⅱ).

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知四棱錐的底面是正方形,⊥底面,且,點分別為側棱的中點 

(1)求證:∥平面;
(2)求證:⊥平面.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)
如圖,在底面是正方形的四棱錐中,,于點中點,上一點.
⑴求證:;
⑵確定點在線段上的位置,使//平面,并說明理由.
⑶當二面角的大小為時,求與底面所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在正方體中,為底面的中心,的中點,設上的中點,求證:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分) 如圖,用一付直角三角板拼成一直二面角A—BD—C,若其中給定 AB="AD" =2,,
(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點A到BC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ ACB=,EF∥AB,FG∥BC,EG∥AC. AB="2EF." 若M是線段AD的中點。求證:GM∥平面ABFE 
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

、如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形ABCD中,為正三角形,,AC與BD交于O點.將沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為,且P點在平面ABCD內的射影落在內.

(Ⅰ)求證:平面PBD;
(Ⅱ)若已知二面角的余弦值為,求的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖,在多面體ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F為CD中點。
(I)求證:EF//平面ABC;
(II)求證:平面BCD;
(III)求多面體ABDEC的體積。

查看答案和解析>>

同步練習冊答案