已知函數(shù)f(x)=ax3+bx+c為R上的奇函數(shù),且當(dāng)x=1時(shí),有極小值-1;函g(x)=-
1
2
x3+
3
2
x+t-
3
t
(t∈R,t≠0)

(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.
分析:(1)由f(-x)=-f(x)解出c,由f(1)=-1及f′(1)=0解出a和b,可得函數(shù)f(x)的解析式.
(2)設(shè)h(x)=f(x)-g(x)=x3-3x-t+
3
t
,則h'(x)=3x2-3,由h′(x)的符號(hào)確定h(x)的單調(diào)性,從而確定h(x)的最小值,由題意知,任意x∈[-2,2],h(x)的最小值大于0,解此不等式,求出t的取值范圍.
解答:解:(1)由f(-x)=-f(x)得:c=0,
f′(1)=3a+b=0
f(1)=a+b=-1
?
a=
1
2
b=-
3
2

f(x)=
1
2
x3-
3
2
x

經(jīng)檢驗(yàn)在x=1時(shí),f(x)有極小值-1,
f(x)=
1
2
x3-
3
2
x

(2)設(shè)h(x)=f(x)-g(x)=x3-3x-t+
3
t
,則h'(x)=3x2-3,
令h'(x)=3x2-3>0得x>1或x<-1,
令h'(x)=3x2-3<0得-1<x<1
所以h(x)在區(qū)間[-2,-1]及[1,2]上的增函數(shù),在區(qū)間[-1,1]上的減函數(shù),
h(x)min=min{h(-2),h(1)}=h(1)=-2-t+
3
t

使對(duì)于任意x∈[-2,2],恒有f(x)>g(x),則h(1)=-2-t+
3
t
>0

解得t<-3或0<t<1∴t∈(-∞,-3)∪(0,1)
點(diǎn)評(píng):本題考查用待定系數(shù)法求函數(shù)解析式,函數(shù)在某個(gè)點(diǎn)取極值的條件,以及函數(shù)的恒成立問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案