【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點O,點EAB的中點.

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

【答案】1證明見解析;(2證明見解析

【解析】試題分析:(1)利用線面平行的判定定理,通過中位線平行得到,從而得到平面;(2)要證明線線垂直,則證明平面線面垂直,所以根據(jù)線面垂直的判定定理,找到,則得證。

試題解析:

(1)連接BC1,因為側(cè)面AA1C1C是菱形,AC1A1C交于點O,所以OAC1的中點,又因為EAB的中點,所以OEBC1,因為OE平面BCC1B1,BC1平面BCC1B1,所以OE∥平面BCC1B1.

(2)因為側(cè)面AA1C1C是菱形,所以AC1A1C,因為AC1A1BA1CA1BA1,A1C平面A1BC,A1B平面A1BC,所以AC1⊥平面A1BC,因為BC平面A1BC,所以AC1BC.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求實數(shù)的值;

(2)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)是一直角墻角,,墻角的兩堵墻面和地面兩兩互相垂直.是一塊長米,寬米的板材,現(xiàn)欲用板材與墻角圍成一個直棱柱空間堆放谷物.

(1)若按如圖(1)放置,如何放置板材才能使這個直棱柱空間最大?

(2)由于墻面使用受限,面只能使用米,面只能使用米.此矩形板材可以折疊圍成一個直四棱柱空間,如圖(2),如何折疊板材才能使這個空間最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,若為單調(diào)遞增的等差數(shù)列,其前項和為,則__________;若為單調(diào)遞減的等比數(shù)列,其前項和為,則__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知函數(shù)f(x)=ex, g(x)=lnx.

(1)設(shè)f(x)在x1處的切線為l1, g(x)在x2處的切線為l2,l1//l2,x1g(x2)的值;

(2)若方程af 2(x)-f(x)-x=0有兩個實根,求實數(shù)a的取值范圍;

(3)設(shè)h(x)=f(x)(g(x)-b),h(x)在[ln2,ln3]內(nèi)單調(diào)遞減,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)設(shè)直線l過點(23)且與直線2x+y+1=0垂直,lx軸,y軸分別交于A、B兩點,求|AB|;

2)求過點A4-1)且在x軸和y軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓,兩點,且的周長為.

(1)求橢圓的方程;

(2)已知直線,互相垂直,直線且與橢圓交于點兩點,直線且與橢圓交于兩點.求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當a=90時,求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱是“回歸數(shù)列”.

(1)①前項和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;

②通項公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;

(2)設(shè)是等差數(shù)列,首項,公差,若是“回歸數(shù)列”,求的值;

(3)是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”,使得成立,請給出你的結(jié)論,并說明理由.

查看答案和解析>>

同步練習冊答案