【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為t為參數(shù)).直線l與曲線C分別交于M,N兩點.

1)寫出曲線C的直角坐標方程和直線l的普通方程;

2)若點P的極坐標為,,求的值.

【答案】1;(22.

【解析】

(1)由,求出曲線的直角坐標方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;

(2)將直線的參數(shù)方程化為標準式為參數(shù)),代入曲線的直角坐標方程,韋達定理得,點在直線上,則,即可求出的值.

(1)由可得

,即,

曲線的直角坐標方程為

由直線的參數(shù)方程t為參數(shù)),消去,

即直線的普通方程為.

(Ⅱ)點的直角坐標為,則點在直線上.

將直線的參數(shù)方程化為標準式為參數(shù)),代入曲線的直角坐標方程,整理得,

直線與曲線交于兩點,

,即.

設點所對應的參數(shù)分別為,

由韋達定理可得

.

在直線上,,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 ,直線與拋物線相交于兩點,且當傾斜角為的直線經(jīng)過拋物線的焦點時,有.

(1)求拋物線的方程;

(2)已知圓,是否存在傾斜角不為的直線,使得線段被圓截成三等分?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幼兒園根據(jù)部分同年齡段的100名女童的身高數(shù)據(jù)繪制了頻率分布直方圖,其中身高的變化范圍是[96,106](單位:厘米),樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102)[102,104),[104,106)

1)求出的值,并求樣本中女童的身高的眾數(shù)和中位數(shù),平均數(shù);

2)在身高在[100,102),[102,104),[104106]的三組中,用分層抽樣的方法抽取14名女童,則身高數(shù)據(jù)在[104,106]的女童中應抽取多少人數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為我國數(shù)學家趙爽3世紀初在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若處的切線方程為,求實數(shù)、的值;

2)設函數(shù)(其中為自然對數(shù)的底數(shù)).

①當時,求的最大值;

②若是單調(diào)遞減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知常數(shù),函數(shù).

(1)討論在區(qū)間上的單調(diào)性;

(2)存在兩個極值點,,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,點為棱的中點.

1)證明:;

2)求直線與平面所成角的正弦值;

3)若為棱上一點,滿足,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,且,橢圓經(jīng)過點.

1)求橢圓的方程;

2)直線過橢圓右頂點,交橢圓于另一點,點在直線上,且.,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019101日,慶祝中華人民共和國成立70周年大會、閱兵式、群眾游行在北京隆重舉行,這次閱兵編59個方(梯)隊和聯(lián)合軍樂團,總規(guī)模約1.5萬人,各型飛機160余架、裝備580余套,是近幾次閱兵中規(guī)模最大的一次.某機構統(tǒng)計了觀看此次閱兵的年齡在30歲至80歲之間的100個觀眾,按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求的值及這100個人的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

2)用分層抽樣的方法在年齡為、的人中抽取5人,再從抽取的5人中隨機抽取2人接受采訪,求接受采訪的2人中年齡在的恰有1人的概率.

查看答案和解析>>

同步練習冊答案