【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

【答案】A
【解析】解:模擬執(zhí)行程序,可得

a=1,A=1,S=0,n=1

S=2

不滿足條件S≥10,執(zhí)行循環(huán)體,n=2,a= ,A=2,S=

不滿足條件S≥10,執(zhí)行循環(huán)體,n=3,a= ,A=4,S=

不滿足條件S≥10,執(zhí)行循環(huán)體,n=4,a= ,A=8,S=

滿足條件S≥10,退出循環(huán),輸出n的值為4.

故選:A.

模擬執(zhí)行程序,依次寫出每次循環(huán)得到的a,A,S的值,當(dāng)S= 時,滿足條件S≥10,退出循環(huán),輸出n的值為4,從而得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若曲線 處的切線經(jīng)過坐標(biāo)原點,求 及該切線的方程;
(2)設(shè) ,若函數(shù) 的值域為 ,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(某保險公司有一款保險產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗若每份保單的保費在 元的基礎(chǔ)上每增加 元,對應(yīng)的銷量 (萬份)與 (元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下 的對應(yīng)數(shù)據(jù):

(元)

銷量 (萬份)

(ⅰ)根據(jù)數(shù)據(jù)計算出銷量 (萬份)與 (元)的回歸方程為 ;
(ⅱ)若把回歸方程 當(dāng)作 的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計此產(chǎn)品的獲益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實數(shù)x,y滿足不等式組 ,則z=2|x|+y的最大植為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時,
f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域為 ,若函數(shù) 滿足下列兩個條件,則稱 在定義域 上是閉函數(shù).① 上是單調(diào)函數(shù);②存在區(qū)間 ,使 上值域為 .如果函數(shù) 為閉函數(shù),則 的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.

查看答案和解析>>

同步練習(xí)冊答案