【題目】已知以下三視圖中有三個同時表示某一個三棱錐,則不是該三棱錐的三視圖是( )
A.
B.
C.
D.
【答案】D
【解析】解:三棱錐的三視圖均為三角形,四個答案均滿足;
且四個三視圖均表示一個高為3,底面為兩直角邊分別為1,2的棱錐
A與C中俯視圖正好旋轉180°,故應是從相反方向進行觀察,而其正視圖和側視圖中三角形斜邊傾斜方向相反,滿足實際情況,故A,C表示同一棱錐
設A中觀察的正方向為標準正方向,以C表示從后面觀察該棱錐
B與D中俯視圖正好旋轉180°,故應是從相反方向進行觀察,但側視圖中三角形斜邊傾斜方向相同,不滿足實際情況,故B,D中有一個不與其它三個一樣表示同一個棱錐,
根據B中正視圖與A中側視圖相同,側視圖與C中正視圖相同,可判斷B是從左邊觀察該棱錐
故選D
【考點精析】掌握由三視圖求面積、體積是解答本題的根本,需要知道求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積.
科目:高中數學 來源: 題型:
【題目】在自然數列1,2,3,,n中,任取k個元素位置保持不動,將其余n﹣k個元素變動位置,得到不同的新數列.由此產生的不同新數列的個數記為Pn(k).
(1)求P3(1)
(2)求 P4(k);
(3)證明 kPn(k)=n Pn﹣1(k),并求出 kPn(k)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,其前n項和為Sn , 且an2+an=2Sn , n∈N* .
(1)求a1及an;
(2)求滿足Sn>210時n的最小值;
(3)令bn=4 ,證明:對一切正整數n,都有 + + ++ < .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠BCD= ,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求證:EF⊥平面BCF;
(2)點M在線段EF上運動,當點M在什么位置時,平面MAB與平面FCB所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)令bn=(﹣1)n﹣1 ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若對圓(x﹣1)2+(y﹣1)2=1上任意一點P(x,y),|3x﹣4y+a|+|3x﹣4y﹣9|的取值與x,y無關,則實數a的取值范圍是( )
A.a≤﹣4
B.﹣4≤a≤6
C.a≤﹣4或a≥6
D.a≥6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣x2﹣ax.
(Ⅰ)若函數f(x)的圖象在x=0處的切線方程為y=2x+b,求a,b的值;
(Ⅱ)若函數f(x)在R上是增函數,求實數a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
已知極點為直角坐標系的原點,極軸為x軸正半軸且單位長度相同的極坐標系中曲線C1:ρ=1, (t為參數).
(1)求曲線C1上的點到曲線C2距離的最小值;
(2)若把C1上各點的橫坐標都擴大為原來的2倍,縱坐標擴大為原來的 倍,得到曲線 .設P(﹣1,1),曲線C2與 交于A,B兩點,求|PA|+|PB|.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com