【題目】(本小題滿分12分)

已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若,求證:不等式: .

【答案】(1)略(2) (3)略

【解析】試題分析:對函數(shù)求導(dǎo),討論,確定單調(diào)區(qū)間和單調(diào)性;作差構(gòu)造新函數(shù),利用導(dǎo)數(shù)

判斷函數(shù)的單調(diào)性,根據(jù)不等式恒成立條件,求出的范圍;借助第二步的結(jié)論,證明不等式.

試題解析:

(Ⅰ)

當(dāng)時,增區(qū)間,無減區(qū)間

當(dāng)時,增區(qū)間,減區(qū)間

(Ⅱ)

上恒成立

設(shè),考慮到

,在上為增函數(shù)

, 當(dāng)時,

上為增函數(shù), 恒成立

當(dāng)時, , 上為增函數(shù)

,在上, , 遞減,

,這時不合題意,

綜上所述,

(Ⅲ)要證明在上,

只需證明

由(Ⅱ)當(dāng)a=0時,在上, 恒成立

再令

上, , 遞增,所以

,相加,得

所以原不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對任意x1 , x2∈S,當(dāng)x1<x2時,恒有f(x1)<f(x2),那么稱這兩個集合“保序同構(gòu)”,以下集合對不是“保序同構(gòu)”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某品牌手機(jī)公司生產(chǎn)某款手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬部并全部銷售完,每萬部的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤f(x)(萬美元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)從區(qū)間[﹣1,1]隨機(jī)抽取2n個數(shù)x1 , x2 , …,xn , y1 , y2 , …,yn , 構(gòu)成n個數(shù)對(x1 , y1),(x2 , y2),…(xn , yn),該同學(xué)用隨機(jī)模擬的方法估計n個數(shù)對中兩數(shù)的平方和小于1(即落在以原點(diǎn)為圓心,1為半徑的圓內(nèi))的個數(shù),則滿足上述條件的數(shù)對約有個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知四棱柱的底面是邊長為的菱形,且, 平面, ,設(shè)的中點(diǎn)。

(Ⅰ)求證: 平面

(Ⅱ)點(diǎn)在線段上,且平面

求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點(diǎn)的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點(diǎn)P,C2與C3相交于點(diǎn)Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(1)討論函數(shù)極值點(diǎn)的個數(shù),并說明理由;

(2)若成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 的各項均為正整數(shù),對于任意n∈N* , 都有 成立,且
(1)求 , 的值;
(2)猜想數(shù)列 的通項公式,并給出證明.

查看答案和解析>>

同步練習(xí)冊答案