【題目】已知過點的直線與直線垂直.

1 ,且點在函數(shù)的圖象上,求直線的一般式方程;

2)若點在直線上,判斷直線是否經過定點?若是,求出該定點的坐標;若不是,請說明理由.

【答案】(1);(2)過定點,理由見解析

【解析】

1)根據(jù)點在函數(shù)的圖象上,求出點的坐標,再利用直線與直線垂直求出直線的斜率,由點斜式方程即可求出直線的一般式方程;

2)根據(jù)點在直線上,找到 之間的關系,消元轉化為,則有,即可解出定點坐標.

1)點在函數(shù)的圖象上,,即點

,得,即直線的斜率為

又直線與直線垂直,則直線的斜率滿足:,即,

所以直線的方程為,一般式方程為:

2)點在直線上,所以,即,

代入中,整理得

,解得

故直線必經過定點,其坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關于x的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.

某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?

(Ⅱ)假設男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機選出2名,設隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關系分別為,,(其中都為常數(shù)),函數(shù)對應的曲線、如圖所示.

1)求函數(shù)的解析式;

2)若該商場一共投資4萬元經銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個不同的極值點,記作,且,證明:為自然對數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋時期著名的數(shù)學家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.若把以上這段文字寫成公式,即,其中a、b、c分別為內角A、B、C的對邊.,,則面積S的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)過后,某市教育局從全市高中生中抽去了100人,調查了他們的壓歲錢收入情況,按照金額(單位:百元)分成了以下幾組:,,,.統(tǒng)計結果如下表所示:

該市高中生壓歲錢收入可以認為服從正態(tài)分布,用樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值)作為的估計值.

(1)求樣本平均數(shù);

(2)求;

(3)某文化公司贊助了市教育局的這次社會調查活動,并針對該市的高中生制定了贈送“讀書卡”的活動,贈送方式為:壓歲錢低于的獲贈兩次讀書卡,壓歲錢不低于的獲贈一次讀書卡.已知每次贈送的讀書卡張數(shù)及對應的概率如下表所示:

現(xiàn)從該市高中生中隨機抽取一人,記(單位:張)為該名高中生獲贈的讀書卡的張數(shù),求的分布列及數(shù)學期望.

參考數(shù)據(jù):若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國有一道古典數(shù)學名著——兩鼠穿墻:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻(連線與墻面垂直),大老鼠第一天進一尺,以后每天加倍,小老鼠第一天也進一尺,以后每天減半,那么兩鼠第幾天能見面.”假設墻厚16尺,如圖是源于該題思想的一個程序框圖,則輸出的( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設常數(shù).在平面直角坐標系中,已知點,直線,曲線軸交于點、與交于點分別是曲線與線段上的動點.

(1)用表示點到點距離;

(2)設,,線段的中點在直線,求的面積;

(3)設,是否存在以為鄰邊的矩形,使得點上?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案