如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;
(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.
(1)=1,e= ;(2) x+2y+2=0和x-2y+2=0.

試題分析:(1)設(shè)所求橢圓的標準方程為=1(a>b>0),右焦點為F2(c,0).因為△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2為直角,因此|OA|=|OB2|,得b=.
結(jié)合c2=a2-b2,得4b2=a2-b2,故a2=5b2,c2=4b2,∴離心率e=.
在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2|B1B2|·|OA|=|OB2|·|OA|=b=b2.
由題設(shè)條件S△AB1B2=4,得b2=4,從而a2=5b2=20.
因此所求橢圓的標準方程為=1.
(2)由(1),知B1(-2,0),B2(2,0).由題意,知直線l的傾斜角不為0,故可設(shè)直線l的方程為x=my-2,代入橢圓方程,得(m2+5)y2-4my-16=0.
設(shè)P(x1,y1),Q(x2,y2),則y1,y2是上面方程的兩根,因此y1+y2,y1·y2=-.
=(x1-2,y1),=(x2-2,y2),
·=(x1-2)(x2-2)+y1y2=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16=-+16=-.
由PB2⊥QB1,得·=0,即16m2-64=0,解得m=±2.
∴滿足條件的直線有兩條,其方程分別為x+2y+2=0和x-2y+2=0.
點評:直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,設(shè)橢圓的左右焦點分別為,過焦點的直線交橢圓于兩點,若的內(nèi)切圓的面積為,設(shè)兩點的坐標分別為,則值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上有兩個動點、,,,則的最小值為(  )
A.6B.C.9D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線所經(jīng)過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為8.則橢圓的標準方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左、右焦點分別為,若橢圓上恰好有6個不同的點,使得為等腰三角形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1、F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點

(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線A   C、BD過原點O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線:y=x+m
(1)若與橢圓有一個公共點,求的值;
(2)若與橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

同步練習(xí)冊答案