精英家教網 > 高中數學 > 題目詳情

【題目】設0<a≤ ,若滿足不等式|x﹣a|<b的一切實數x,亦滿足不等式|x﹣a2|< ,求實數b的取值范圍.

【答案】解:解:由題意可得b>0是不用求的,否則|x﹣a|<b都沒解了.
故有﹣b<x﹣a<b,即a﹣b<x<a+b.
由不等式|x﹣a2|< 得,﹣ <x﹣a2 ,即 a2 <x<a2+
第二個不等式的范圍要大于第一個不等式,這樣只要滿足了第一個不等式,
肯定滿足第二個不等式,命題成立.
故有 a2 ≤a﹣b,且 a+b≤a2+ ,0<a≤
化簡可得 b≤﹣a2+a+ ,且b≤a2﹣a+
由于﹣a2+a+ =﹣(a﹣ 2+ ∈[ , ],故 b≤
由于 a2﹣a+ =(a﹣ 2+ ∈[ ].故 b≤
綜上可得 0<b≤
【解析】由題意可得b>0,求出這兩個不等式的解集,由題意可得 a2 ≤a﹣b,且 a+b≤a2+ ,0<a≤ .由此可得b小于或等于﹣a2+a+ 的最小值,且b小于或等于 a2﹣a+ 的最小值,由此求得實數b的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當a=2時,求函數f(x)的定義域;
(2)是否存在實數a,使函數f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若對任意實數x,cos2x+2ksinx﹣2k﹣2<0恒成立,則實數k的取值范圍是(
A.
B.
C.
D.k>﹣1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對定義域分別為D1 , D2的函數y=f(x),y=g(x),規(guī)定:函數h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),則h(x)的單調減區(qū)間是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中,若, 處切線的斜率為

(1)求函數的解析式及其單調區(qū)間;

(2)若實數滿足,且對于任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)已知f(x)是偶函數,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)當a=2,求函數f(x)的最大值和最小值;
(2)若函數f(x)在定義域內是單調函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,是奇函數且在區(qū)間(0,1)內單調遞減的函數是(
A.y=log2x
B.y=x﹣
C.y=﹣x3
D.y=tanx

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數f(x)滿足:f(x+1)= ,當x∈(0,1]時,f(x)=2x , 則f(log29)等于

查看答案和解析>>

同步練習冊答案