已知函數(shù)f(x)=(m-2)x2+(m2-4)x+m是偶函數(shù),函數(shù)g(x)=x3+2x2+mx+5在(-∞,+∞)內(nèi)單調(diào)遞增,則實數(shù)m等于( )
A.2
B.-2
C.±2
D.0
【答案】分析:由函數(shù)f(x)=(m-2)x2+(m2-4)x+m是偶函數(shù),可得m2-4=0,由函數(shù)g(x)=x3+2x2+mx+5在(-∞,+∞)內(nèi)單調(diào)遞增,得出g'(x)=3x2+4x+m≥0在R上恒成立,故△≤0,求解即可得出m的值.
解答:解:函數(shù)f(x)=(m-2)x2+(m2-4)x+m是偶函數(shù),可得m2-4=0,故m=±2,①
又由函數(shù)g(x)=x3+2x2+mx+5在(-∞,+∞)內(nèi)單調(diào)遞增,得出
g'(x)=3x2+4x+m≥0在R上恒成立,故△≤0,即16-12m≤0,即m≥
由①②得m=2
故選A.
點評:本題考查函數(shù)的性質(zhì),函數(shù)的奇偶性與與函數(shù)的單調(diào)性,本題把題設條件中函數(shù)的性質(zhì)轉(zhuǎn)化成了參數(shù)相應的不等式,求參數(shù),請仔細體會本題的轉(zhuǎn)化方式與轉(zhuǎn)化方向.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案