【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺(tái)變頻空調(diào)送往市內(nèi)某商場(chǎng),現(xiàn)有4輛甲型貨車(chē)和8輛乙型貨車(chē)可供調(diào)配,每輛甲型貨車(chē)的運(yùn)輸費(fèi)用是400元,可裝空調(diào)20臺(tái),每輛乙型貨車(chē)的運(yùn)輸費(fèi)用是300元,可裝空調(diào)10臺(tái),若每輛車(chē)至多運(yùn)一次,則企業(yè)所花的最少運(yùn)費(fèi)為(

A. 2000B. 2200C. 2400D. 2800

【答案】B

【解析】

設(shè)需甲、乙型貨車(chē)各x、y輛,企業(yè)所花的費(fèi)用為z元,由題意可得關(guān)于x,y的不等式組,并得到目標(biāo)函數(shù),由不等式組作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

設(shè)需甲、乙型貨車(chē)各x、y輛,企業(yè)所花的費(fèi)用為z元,

由題意有

由約束條件作出可行域如圖:

化目標(biāo)函數(shù)z=400x+300y,

由圖可知當(dāng)x=4,y=2時(shí),z最小值為2200.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.

(1)求ab的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線(xiàn),直線(xiàn)為參數(shù)).

I)寫(xiě)出曲線(xiàn)的參數(shù)方程,直線(xiàn)的普通方程;

II)過(guò)曲線(xiàn)上任意一點(diǎn)作與夾角為的直線(xiàn),交于點(diǎn),的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從5本不同的科普書(shū)和4本不同的數(shù)學(xué)書(shū)中選出4本,送給4位同學(xué),每人1本,問(wèn):

(1)如果科普書(shū)和數(shù)學(xué)書(shū)各選2本,共有多少種不同的送法?(各問(wèn)用數(shù)字作答)

(2)如果科普書(shū)甲和數(shù)學(xué)書(shū)乙必須送出,共有多少種不同的送法?

(3)如果選出的4本書(shū)中至少有3本科普書(shū),共有多少種不同的送法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知斜三棱柱的側(cè)面與底面垂直,,且,,求:

1)側(cè)棱與底面所成角的大;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)滿(mǎn)足:,定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)的值;

(2)判斷函數(shù)的單調(diào)性并用定義加以證明;

(3)若對(duì)任意的 ,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量, .

(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6),先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿(mǎn)足的概率;

(2)若在連續(xù)區(qū)間上取值,求滿(mǎn)足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分13分如圖在直角坐標(biāo)系,的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合終邊交單位圓于點(diǎn),將角的終邊按逆時(shí)針?lè)较蛐D(zhuǎn)交單位圓于點(diǎn),

1,

2分別過(guò)軸的垂線(xiàn),垂足依次為,的面積為,的面積為,求角的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿(mǎn)足①對(duì)于任意,都有;②;③的圖像與軸的兩個(gè)交點(diǎn)之間的距離為4.

1)求的解析式;

2)記

①若為單調(diào)函數(shù),求的取值范圍;

②記的最小值為,討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案