如圖,在直三棱柱中,已知,,.
(1)求異面直線與夾角的余弦值;
(2)求二面角平面角的余弦值.
(1),(2).
解析試題分析:(1)利用空間向量求線線角,關(guān)鍵在于正確表示各點(diǎn)的坐標(biāo). 以為正交基底,建立空間直角坐標(biāo)系.則,,,,所以,,因此,所以異面直線與夾角的余弦值為.(2)利用空間向量求二面角,關(guān)鍵在于求出一個(gè)法向量. 設(shè)平面的法向量為,則 即取平面的一個(gè)法向量為;同理可得平面的一個(gè)法向量為;由兩向量數(shù)量積可得二面角平面角的余弦值為.
試題解析:
如圖,以為正交基底,建立空間直角坐標(biāo)系.
則,,,,所以,,
,.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ff/7/9mhse.png" style="vertical-align:middle;" />,
所以異面直線與夾角的余弦值為. 4分
(2)設(shè)平面的法向量為,
則 即
取平面的一個(gè)法向量為;
所以二面角平面角的余弦值為. 10分
考點(diǎn):利用空間向量求線線角及二面角
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點(diǎn),是上的點(diǎn).
(1)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
(2)若,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形與梯形所在的平面互相垂直,,∥,,,為的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面;
(3)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC.
(1)證明:平面ADB⊥平面BDC;
(2)設(shè)E為BC的中點(diǎn),求與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方體的棱長為2,E、F分別是、的中點(diǎn),過、E、F作平面交于G.
(l)求證:EG∥;
(2)求二面角的余弦值;
(3)求正方體被平面所截得的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,,E是PA的中點(diǎn).
(1)求證:平面平面EBD;
(2)若PA=AB=2,直線PB與平面EBD所成角的正弦值為,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線段的中點(diǎn),求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com