【題目】若集合A={(x,y)|y=1+ },B={(x,y)|y=k(x﹣2)+4},當(dāng)集合A∩B有4個(gè)子集時(shí),實(shí)數(shù)k的取值范圍是

【答案】( , ]
【解析】解:若集合A∩B有4個(gè)子集,則集合A∩B有2個(gè)元素, 即函數(shù)y=1+ 和y=k(x﹣2)+4有兩個(gè)交點(diǎn),
在同一坐標(biāo)系中畫(huà)出函數(shù)y=1+ 和y=k(x﹣2)+4的圖象如下圖所示:

由圖可知:當(dāng) <k≤ 時(shí),滿(mǎn)足條件,
故實(shí)數(shù)k的取值范圍是( ],
所以答案是:( , ]
【考點(diǎn)精析】本題主要考查了子集與真子集的相關(guān)知識(shí)點(diǎn),需要掌握任何一個(gè)集合是它本身的子集;n個(gè)元素的子集有2n個(gè),n個(gè)元素的真子集有2n -1個(gè),n個(gè)元素的非空真子集有2n-2個(gè)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.
(1)若l1⊥l2 , 求實(shí)數(shù)m的值;
(2)若l1∥l2 , 求l1與l2之間的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,記長(zhǎng)方體ABCD﹣A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的幾何體為Ω,則下列結(jié)論中不正確的是(

A.EH∥FG
B.四邊形EFGH是平行四邊形
C.Ω是棱柱
D.Ω是棱臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點(diǎn),底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BE∥平面APD;
(Ⅱ)求證:BC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,M和N分別為BC、C1C的中點(diǎn),那么異面直線MN與AC所成的角等于(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E為PD中點(diǎn).
(1)求證:CE∥平面PAB;
(2)求直線CE與平面PAD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)簡(jiǎn)單幾何體的主視圖,左視圖如圖所示,則其俯視圖不可能為( ) .

A.長(zhǎng)方形
B.直角三角形
C.圓
D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且點(diǎn) 在該橢圓上
(1)求橢圓C的方程;
(2)過(guò)橢圓C的左焦點(diǎn)F1的直線l與橢圓相交于A,B兩點(diǎn),若△AOB的面積為 ,求圓心在原點(diǎn)O且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下四種變換方式:

向左平移個(gè)單位長(zhǎng)度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的;

向右平移個(gè)單位長(zhǎng)度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的;

每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,向右平移個(gè)單位長(zhǎng)度;

每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,向左平移個(gè)單位長(zhǎng)度;

其中能將的圖像變換成函數(shù)的圖像的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案