【題目】已知圓錐曲線 ( 是參數(shù))和定點 , 、 是圓錐曲線的左、右焦點.
(1)求經(jīng)過點 且垂直于直線 的直線 的參數(shù)方程;
(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,求直線 的極坐標方程.
【答案】
(1)解:圓錐曲線 化為普通方程 ,所以 ,則直線 的斜率 ,于是經(jīng)過點 且垂直于直線 的直線 的斜率 ,直線 的傾斜角是 .所以直線 的參數(shù)方程是 ( 為參數(shù)),
即 ( 為參數(shù)).
(2)解:直線 的斜率 ,傾斜角是 ,設(shè) 是直線 上任一點,則 ,即 ,則
【解析】(1)由圓錐曲線C的參數(shù)方程化為直角坐標方程可得F2(1,0),利用截距式即可得出直線AF2的直角坐標方程.最后求出點斜式直線方程,最后轉(zhuǎn)換為參數(shù)方程.
(2)直接把直角坐標方程轉(zhuǎn)化為極坐標方程.本題考查了橢圓的參數(shù)方程、直線的截距式與參數(shù)方程、參數(shù)的應用,考查了推理能力與計算能力,屬于中檔題.
【考點精析】通過靈活運用橢圓的參數(shù)方程,掌握橢圓的參數(shù)方程可表示為即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|log3x|,實數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2 , n]上的最大值為2,則 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形 中, , ,點 是 上的動點.現(xiàn)將矩形 沿著對角線 折成二面角 ,使得 .
(Ⅰ)求證:當 時, ;
(Ⅱ)試求 的長,使得二面角 的大小為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),滿足f(﹣ +x)=f( +x),當x∈[0, ]時,f(x)=ln(x2﹣x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( )
A.3
B.5
C.7
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是( )
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com