【題目】已知函數(shù) .

Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

Ⅱ)當(dāng)的圖像經(jīng)過點(diǎn)時(shí),求的值及函數(shù)的最小正周期.

【答案】(Ⅰ)最大值2,最小值為;(Ⅱ) .最小正周期

【解析】試題分析:1根據(jù)二倍角的正弦公式、二倍角的余弦公式以及兩角和的正弦公式化簡(jiǎn)可得 ,因?yàn)?/span>,所以,根據(jù)正弦函數(shù)的單調(diào)性與圖象可得函數(shù)在區(qū)間上的最大值與最小值;(2根據(jù)二倍角的正弦公式、二倍角的余弦公式以及兩角和的正弦公式化簡(jiǎn)可得 點(diǎn)代入解析式可得,結(jié)合即可得進(jìn)而可

試題解析:(1當(dāng)時(shí),

.

因?yàn)?/span>,所以

所以,當(dāng),即時(shí), 取得最大值,

當(dāng),即時(shí), 取得最小值為.

2因?yàn)?/span>,

所以

因?yàn)?/span>的圖象經(jīng)過點(diǎn)

所以,即

所以所以

因?yàn)?/span>,所以

所以的最小正周期

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在棱錐中, 為矩形, , 與面角, 與面角.

1)在上是否存在一點(diǎn),使,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;

2)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cosx,C2y=sin2x+),則下面結(jié)論正確的是( 。

A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EAD不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下面四個(gè)類比結(jié)論:

①實(shí)數(shù)ab,若ab=0,則a=0或b=0;類比復(fù)數(shù)z1,z2,若z1z2=0,則z1=0或z2=0.

②實(shí)數(shù)a,b,若ab=0,則a=0或b=0;類比向量ab,若a·b=0,則a=0或b=0.

③實(shí)數(shù)a,b,有a2b2=0,則ab=0;類比復(fù)數(shù)z1z2,有zz=0,則z1z2=0.

④實(shí)數(shù)a,b,有a2b2=0,則ab=0;類比向量a,b,若a2b2=0,則ab=0.

其中類比結(jié)論正確的個(gè)數(shù)是(  )

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率且過拋物線的焦點(diǎn).

1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知 ,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C , ,圓 的圓心到直線的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線與圓相切,且與橢圓C相交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,函數(shù)的極大值為,求實(shí)數(shù)的值;

(2)若對(duì)任意的, 上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按下面的流程圖進(jìn)行計(jì)算.若輸出的,則輸入的正實(shí)數(shù)值的個(gè)數(shù)最多為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案