已知的三個(gè)頂點(diǎn),,,其外接圓為

(1)若直線過(guò)點(diǎn),且被截得的弦長(zhǎng)為2,求直線的方程;

(2)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求的半徑的取值范圍.

 

【答案】

1;(2.

【解析】

試題分析:(1)求的外接圓方程可用待定系數(shù)法或利用兩邊垂直平分線的交點(diǎn)先求出圓心,再利用兩點(diǎn)之間距離公式求出半徑,求出圓的方程后再利用待定系數(shù)法求出直線的方程,此時(shí)要注意分直線斜率存在和不存在兩種情況討論;(2)可設(shè)出點(diǎn)的坐標(biāo),再把點(diǎn)的坐標(biāo)用其表示,把點(diǎn)的坐標(biāo)代入圓的方程,利用方程組恒有解去考察半徑的取值范圍,但要注意三點(diǎn)不能重合,即圓和線段無(wú)公共點(diǎn).

試題解析:(1)線段的垂直平分線方程為,線段的垂直平分線方程為,所以外接圓圓心,半徑,的方程為4

設(shè)圓心到直線的距離為,因?yàn)橹本截得的弦長(zhǎng)為2,所以

當(dāng)直線垂直于軸時(shí),顯然符合題意,即為所求; 6

當(dāng)直線不垂直于軸時(shí),設(shè)直線方程為,則,解得,

綜上,直線的方程為8

(2) 直線的方程為,設(shè),

因?yàn)辄c(diǎn)是點(diǎn),的中點(diǎn),所以,又都在半徑為上,

所以 10

因?yàn)樵撽P(guān)于的方程組有解,即以為圓心為半徑的圓與以為圓心為半徑的圓有公共點(diǎn),所以, 12

,所以對(duì)]成立

[0,1]上的值域?yàn)?/span>[10],15

又線段與圓無(wú)公共點(diǎn),所以對(duì)成立,即.的半徑的取值范圍為16

考點(diǎn):圓的方程,直線與圓的位置關(guān)系,圓與圓的位置關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆四川省成都市石室中學(xué)高三三診模擬考試?yán)砜茢?shù)學(xué) 題型:填空題

已知的三個(gè)頂點(diǎn)均在球O的球面上,且AB=AC=1,,直線OA與平面ABC所成的角的正弦值為,則球面上B、C兩點(diǎn)間的球面距離為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省合肥市高三第一次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知的三個(gè)頂點(diǎn)都在拋物線上,且拋物線的焦點(diǎn)滿足,若邊上的中線所在直線的方程為為常數(shù)且).

1)求的值;

2拋物線的頂點(diǎn),,的面積分別記為,,,求證:為定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三第二次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷 題型:選擇題

已知的三個(gè)頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:,若實(shí)數(shù)滿足:,則的值為

  A.3       B.       C.2          D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市楊浦區(qū)高三上學(xué)期期末學(xué)科測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知的三個(gè)頂點(diǎn)在拋物線:上運(yùn)動(dòng),

(1). 求的焦點(diǎn)坐標(biāo);

(2). 若點(diǎn)在坐標(biāo)原點(diǎn), 且 ,點(diǎn)上,且  ,

求點(diǎn)的軌跡方程;

(3). 試研究: 是否存在一條邊所在直線的斜率為的正三角形,若存在,求出這個(gè)正三角形的邊長(zhǎng),若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西師大附中高三理科數(shù)學(xué)月考試卷 題型:解答題

(本小題滿分14分)已知函數(shù).

(1)證明:函數(shù) 對(duì)于定義域內(nèi)任意都有:成立.

(2)已知的三個(gè)頂點(diǎn)、、都在函數(shù)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,求證:是鈍角三角形,但不可能是等腰三角形.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案