已知橢圓的方程為:
x2
a2
+
y2
b2
=1(a>b>0)
,其中a2=4c,直線l:3x-2y=0與橢圓的交點(diǎn)在x軸上的射影恰為橢圓的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓在x軸上方的一個(gè)交點(diǎn)為P,F(xiàn)是橢圓的右焦點(diǎn),試探究以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系.
分析:(Ⅰ)設(shè)橢圓的左右焦點(diǎn)分別為F1(-c,0)、F2(c,0),由題意可得直線3x-2y=0與橢圓的一個(gè)交點(diǎn)坐標(biāo)是M(c,
3c
2
)
,由橢圓定義可得4c=2a①,再由
a2
c
=4
②,a2=b2+c2③,可得a,b,c;
(Ⅱ)由(Ⅰ)可知,直線與橢圓的一個(gè)交點(diǎn)為P(1,
3
2
),F(xiàn)(1,0),由已知易求兩圓的方程,求出圓心距,可得與兩圓半徑間的關(guān)系,由此可作出位置判斷;
解答:解:(Ⅰ)設(shè)橢圓的左右焦點(diǎn)分別為F1(-c,0)、F2(c,0),
直線3x-2y=0與橢圓的一個(gè)交點(diǎn)坐標(biāo)是M(c,
3c
2
)
,
根據(jù)橢圓的定義得:|MF1|+|MF2|=2a,
[c-(-c)]2+(
3c
2
)
2
+
(c-c)2+(
3c
2
)
2
=2a
,即4c=2a①,
a2
c
=4
②,a2=b2+c2③,聯(lián)立①②③三式解得a=2,b=
3
,c=1
,
所以橢圓的方程為:
x2
4
+
y2
3
=1

(Ⅱ)由(Ⅰ)可知,直線與橢圓的一個(gè)交點(diǎn)為P(1,
3
2
),F(xiàn)(1,0),
則以PF為直徑的圓的方程是(x-1)2+(y-
3
4
)2=
9
16
,圓心為(1,
3
4
),半徑為
3
4
,;
以橢圓長軸為直徑的圓的方程是x2+y2=4,圓心是(0,0),半徑是2,
兩圓心距為
12+(
3
4
)2
=
5
4
=2-
3
4
,所以兩圓內(nèi)切.
點(diǎn)評(píng):本題考查橢圓的方程、直線與橢圓的位置關(guān)系、圓與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為
x2
16
+
y2
m2
=1(m>0)
,如果直線y=
2
2
x
與橢圓的一個(gè)交點(diǎn)M在x軸的射影恰為橢圓的右焦點(diǎn)F,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)為Γ的三個(gè)頂點(diǎn).
(1)若點(diǎn)M滿足
AM
=
1
2
(
AQ
+
AB
)
,求點(diǎn)M的坐標(biāo);
(2)設(shè)直線l1:y=k1x+p交橢圓Γ于C、D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E.若k1k2=-
b2
a2
,證明:E為CD的中點(diǎn);
(3)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何構(gòu)作過PQ中點(diǎn)F的直線l,使得l與橢圓Γ的兩個(gè)交點(diǎn)P1、P2滿足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1),若橢圓Γ上的點(diǎn)P1、P2滿足
PP1
+
PP2
=
PQ
,求點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,過橢圓的右焦點(diǎn)且與x軸垂直的直線與橢圓交于P、Q兩點(diǎn),橢圓的右準(zhǔn)線與x軸交于點(diǎn)M,若△PQM為正三角形,則橢圓的離心率等于
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為
x2
16
+
y2
m
=1,焦點(diǎn)在x軸上,則m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案