若函數(shù)f(x)的定義域為[1,4],求函數(shù)f(x2)的定義域.
分析:要求函數(shù)的定義域,就是求函數(shù)式中x的取值范圍.由題意可得1≤x2≤4,解得x的范圍,即可求得函數(shù)f(x2)的定義域.
解答:解:因為函數(shù)y=f(x)的定義域是[1,4],
所以函數(shù) y=f(x2)中1≤x2≤4,
即-2≤x≤-1或1≤x≤2.
所求函數(shù)的定義域為:[-2,-1]∩[1,2]
點評:本題考查函數(shù)的定義域并且是抽象函數(shù)的定義域,本題解題的關鍵是不管所給的是函數(shù)是什么形式保證括號中的部分范圍一致.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得(x-1)f(x)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得f(x-1)<0的x的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(1)=0,則使得f(x)<0的x得取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2+x)=0,則函數(shù)f(x)的圖象關于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內的兩個值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數(shù);
④若f(x)是定義在R上的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2x+sinx
(Ⅰ)若函數(shù)f(x)的定義為R,求函數(shù)f(x)的值域;
(Ⅱ)函數(shù)f(x)在區(qū)間[0,
π2
]
上是不是單調函數(shù)?請說明理由.

查看答案和解析>>

同步練習冊答案