【題目】已知直線l:
1證明直線l經(jīng)過定點(diǎn)并求此點(diǎn)的坐標(biāo);
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線l的方程.
【答案】(1)定點(diǎn)(﹣2,1)(2)k≥0;(3)見解析
【解析】
分析:(1)直線l的方程可化為y=k(x+2)+1,直線l過定點(diǎn)(-2,1);(2)要使直線l不經(jīng)過第四象限,則直線的斜率和直線在y軸上的截距都是非負(fù)數(shù),解出k的取值范圍;
(3)先求出直線在兩個(gè)坐標(biāo)軸上的截距,代入三角形的面積公式,再使用基本不等式可求得面積的最小值.
(1)直線l的方程可化為y=k(x+2)+1,
故無論k取何值,直線l總過定點(diǎn)(﹣2,1).
(2)直線l的方程可化為y=kx+2k+1,則直線l在y軸上的截距為2k+1,
要使直線l不經(jīng)過第四象限,則,
解得k的取值范圍是k≥0.
(3)依題意,直線l: y=kx+2k+1,在x軸上的截距為﹣,在y軸上的截距為1+2k,
∴A(﹣,0),B(0,1+2k),
又﹣<0且1+2k>0,
∴k>0,故S=|OA||OB|=×(1+2k)
=(4k++4)≥(4+4)=4,
當(dāng)且僅當(dāng)4k=,即k=或-時(shí),取等號(hào),當(dāng)k=-時(shí)直線過原點(diǎn),不存在三角形,故舍掉.
此時(shí)直線方程為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的邊長(zhǎng)為6,∠ABD=30°,點(diǎn)E、F分別在邊BC、DC上,BC=2BE,CD=λCF.若 =﹣9,則λ的值為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段圖象過點(diǎn)(0,1),如圖所示.
(1)求函數(shù)f1(x)的表達(dá)式;
(2)將函數(shù)y=f1(x)的圖象向右平移個(gè)單位,得函數(shù)y=f2(x)的圖象,求y=f2(x)的最大值,并求出此時(shí)自變量x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線
(1)求證:直線過定點(diǎn);
(2)求直線被圓所截得的弦長(zhǎng)最短時(shí)的值;
(3)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,離心率為,且點(diǎn)在該橢圓上。
(I)求橢圓C的方程;
(II)過橢圓C的左焦點(diǎn)的直線l與橢圓C相交于兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線l相切的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,若曲線 上存在(x0 , y0),使得f(f(y0))=y0成立,則實(shí)數(shù)m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.點(diǎn)為圓上任意一點(diǎn), 為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線經(jīng)過點(diǎn)且與橢圓相切, 與圓相交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,證明:直線與橢圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較注射兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗(yàn),將這200只家兔隨機(jī)地分成兩組,毎組100只,其中一組注射藥物,另一組注射藥物.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同組的概率;
(2)下表1和表2分別是注射藥物和后的試驗(yàn)結(jié)果.(皰疹面積單位: )
表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表
表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表
(。┩瓿上旅骖l率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大。
(ⅱ)完成下面列聯(lián)表,并回答能否有的把握認(rèn)為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
表3:
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com