已知△ABC中,A、B、C分別是三個(gè)內(nèi)角,已知= (a b)sinB,又△ABC的外接圓半徑為,則角C為( )

A.30°               B.45°            C.60°                 D.90°

解析:C   ,故R2 (sin2Asin2C) = (ab) RsinB,即a2 c2 = (a b)b,a2 + b2 c2 = ab,cosC =,C = 60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線(xiàn)方程;
(2)直線(xiàn)l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長(zhǎng)c=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
,
n
=(cos
A
2
,sin
A
2
)
滿(mǎn)足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對(duì)任意的滿(mǎn)足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案