【題目】定義在R上的偶函數(shù)f(x)滿足f(2+x)=f(x),且在[﹣3,﹣2]上是減函數(shù),若A、B是銳角三角形ABC的兩個內(nèi)角,則下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

【答案】B
【解析】解:由f(x+2)=f(x)得,函數(shù)f(x)的周期為2,

因為f(x)在[﹣3,﹣2]上為減函數(shù),所以f(x)在[﹣1,0]上為減函數(shù),

因為f(x)為偶函數(shù),所以f(x)在[0,1]上為單調(diào)增函數(shù).

因為在銳角三角形中,π﹣A﹣B< ,

所以A+B> ,即 ﹣B<A,

因為α,β是銳角,所以0< ﹣B<A< ,

所以sinA>sin( ﹣B)=cosB,

因為f(x)在[0,1]上為單調(diào)增函數(shù).

所以f(sinA)>f(cosB),

所以答案是:B.

【考點精析】關(guān)于本題考查的奇偶性與單調(diào)性的綜合,需要了解奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x2+(2﹣m)x﹣m,g(x)=x2﹣x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求關(guān)于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]時f(x)的值域;
(2)在△ABC中,角A、B、C所對的邊為a,b,c,且角C為銳角,SABC= ,c=2,f(C+ )= .求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα=﹣ ,tan(α+β)=﹣3,π<α< ,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 經(jīng)過點 ,求:
(1)曲線在點 處的切線的方程;
(2)過點 的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率 ,焦距為
(1)求橢圓 的方程;
(2)已知橢圓 與直線 相交于不同的兩點 ,且線段 的中點不在圓 內(nèi),求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校在軍訓(xùn)過程中要進行打靶訓(xùn)練,給每位同學(xué)發(fā)了五發(fā)子彈,打靶規(guī)則:每個同學(xué)打靶過程中,若 連續(xù)兩發(fā)命中或者 連續(xù)兩發(fā)不中則要停止射擊,否則將子彈打完.假設(shè)張同學(xué)在向目標射擊時,每發(fā)子彈的命中率為
(1)求張同學(xué)前兩發(fā)只命中一發(fā)的概率;
(2)求張同學(xué)在打靶過程中所耗用的子彈數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x2的圖象在點(x0 , x02)處的切線為直線l,若直線l與函數(shù)y=lnx(x∈(0,1))的圖象相切,則滿足(
A.x0∈( ,
B.x0∈(1,
C.x0∈(0,
D.x0∈( ,1)

查看答案和解析>>

同步練習(xí)冊答案