若不等式|x-5|+|x+3|<t的解集不為空集,則實數(shù)t的取值范圍為
 
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:利用絕對值三角不等式求得|x-5|+|x+3|的最小值,可得實數(shù)t的取值范圍.
解答: 解:∵不等式|x-5|+|x+3|<t的解集不為空集,|x-5|+|x+3|≥|(x-5)-(x+3)|=8,∴t>8,
故答案為:(8,+∞).
點評:本題主要考查絕對值三角不等式,絕對值不等式的解法,函數(shù)的能成立問題,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,PA⊥平面ABC,△ABC中BC⊥AC,
(1)求證:BC⊥平面PAC;
(2)求證:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},且A∪B={2,3,5},A∩B={3},求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f﹙x﹚=
2x
1+|x|
﹙x∈R﹚,區(qū)間M=[a,b](a<b),集合N={y|y=f﹙x﹚,x∈M},則使M=N成立的實數(shù)對(a,b)有
 
對.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義“⊕”,“?”是兩個運算符號,且滿足如下運算法則:對任意a,b∈R,有a⊕b=ab,a?b=
a-b
(a+b)2+1
,設(shè)全集U={c|c=(a⊕b)+(a?b),-2<a≤b<1且a,b∈Z},A={d|d=2(a⊕b)+a?b,-1<a<b<2且a,b∈Z},則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c分別是△ABC的A,B,C所對的三邊,且csinC=3asinA+3bsinB,則圓M:x2+y2=12被直線l:ax-by+c=0所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
滿足|
a
|=4,|
b
|=3,且(2
a
-3
b
)•(2
a
+
b
)=61,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={m|m=6n,n∈N*,且m<60}中所有元素的和等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面區(qū)域D1={(x,y)||x|<2,|y|<2},D2={(x,y)|kx-y+2<0},在D1內(nèi)隨機取一點M,若點M恰好取自區(qū)域D2的概率為p,且0<p≤
1
8
,則k的取值范圍是( 。
A、[-1,1]
B、[-1,0]∪(0,1]
C、[-1,
1
2
]∪[
1
2
,1]
D、[-
1
2
,0]∪(0,
1
2
]

查看答案和解析>>

同步練習冊答案