已知數(shù)列{an}滿足,a1=1,a2=2,an+2=
an+an+1
2
,n∈N*.令bn=an+1-an,則
bn+1
bn
=
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:在數(shù)列遞推式中取n=n-1得另一遞推式,代入bn+1=an+2-an+1中整理得到
bn+1
bn
=-
1
2
,n∈N*且n≥2,
再由已知求出b1,b2,驗(yàn)證后得到最后結(jié)論.
解答: 解:由an+2=
an+an+1
2
,n∈N*,
an+1=
an-1+an
2
,n∈N*且n≥2,
∴bn+1=an+2-an+1=
an+an+1
2
-an+1
  
=-
1
2
(an+1-an)=-
1
2
bn
,n∈N*且n≥2,
bn+1
bn
=-
1
2
,n∈N*且n≥2,
又b1=a2-a1=2-1=1,
a3=
a1+a2
2
=
1+2
2
=
3
2

b2=a3-a2=
3
2
-2=-
1
2
,
b2
b1
=-
1
2

綜上,
bn+1
bn
=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查了學(xué)生靈活處理問(wèn)題和解決問(wèn)題的能力,解答的關(guān)鍵在于bn與an的相互轉(zhuǎn)換,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx-
π
6
)-2cos2
ω
2
x+1(ω>0).直線y=
3
與函數(shù)y=f(x)圖象相鄰兩交點(diǎn)的距離為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若點(diǎn)(
B
2
,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心,且b=3,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lg(x2-2x)
9-x2
的定義域?yàn)锳,
(1)求A;
(2)若B={x|x2-2x+1-k2≥0},且A∩B≠∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD,底面ABCD是∠A=60°、邊長(zhǎng)為a的菱形,又PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
(1)證明:MB⊥平面PAD;
(2)求點(diǎn)A到平面PMB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(Ⅰ)求a的值;  
(Ⅱ)若|f(x)-2f(
x
2
)|≤k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知程序框圖如圖所示,執(zhí)行相應(yīng)程序,輸出y的值為1,則輸入的整數(shù)x的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于曲線C:x4+y2=1,給出下列說(shuō)法:
①關(guān)于坐標(biāo)軸對(duì)稱;      
②關(guān)于點(diǎn)(0,0)對(duì)稱;
③關(guān)于直線y=x對(duì)稱;  
④是封閉圖形,面積大于π.
則其中正確說(shuō)法的序號(hào)是
 
.(注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+2x,若f(x2-4)<2,則實(shí)數(shù)x的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了考察某校各班參加數(shù)學(xué)競(jìng)賽的人數(shù),在全校隨機(jī)抽取5個(gè)班級(jí),把每個(gè)班級(jí)參加該小組的人數(shù)作為樣本數(shù)據(jù).已知樣本平均數(shù)為7,樣本方差為4,且樣本數(shù)據(jù)互相不相同,則樣本數(shù)據(jù)中的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案