求證:.(n≥2,n∈N*)

答案:
解析:

  證明:(1)當(dāng)n=2時(shí),右邊,不等式成立.

  (2)假設(shè)當(dāng)n=k()時(shí)命題成立,即

  

  則當(dāng)時(shí),

  

  

  所以當(dāng)時(shí)不等式也成立

  由(1),(2)可知,原不等式對(duì)一切均成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足遞推關(guān)系式:an=
4an-1-2
an-1+1
(n≥2,n∈N),首項(xiàng)為a1

(1)若a1>a2,求a1的取值范圍;
(2)記bn=
an-2
an-1
(n∈N*),1<a1<2,求證:數(shù)列{bn}
是等比數(shù)列;
(3)若an>an+1(n∈N*)恒成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+2Sn•Sn-1=0(n≥2,n∈N*),a1=
1
2

(Ⅰ)求證:{
1
Sn
}是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若bn=2(1-n)an(n≥2,n∈N*),求證:b22+b32+…+bn2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-ln(x+a).(a是常數(shù))
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)y=f(x)在x=1處取得極值時(shí),若關(guān)于x的方程f(x)+2x=x2+b在[0.5,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(Ⅲ)求證:當(dāng)n≥2,n∈N+時(shí)(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)設(shè)數(shù)列{an}與數(shù)列{bn}滿足a1=b1=1,
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2且n∈N*).
(Ⅰ)求證:
bn+1
bn+1
=
an
an+1
(n≥2);
(Ⅱ)設(shè)(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)=λ(
1
a1
+
1
a2
…+
1
an
)
(n∈N*),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)一模)已知a<b,且a2-a-6=0,b2-b-6=0,數(shù)列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數(shù)列{bn}是等比數(shù)列;
(2)已知數(shù)列{cn}滿足cn=
an3n
(n∈N*),試建立數(shù)列{cn}的遞推公式(要求不含an或bn);
(3)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案