【題目】若圖,在正方體中, 分別是的中點(diǎn).

(1)求證:平面平面;

(2)在棱上是存在一點(diǎn),使得平面,若存在,求的值;若不存在,說明理由.

【答案】(1)證明過程見解析;(2)

【解析】試題分析:(1)連接,由正方形性質(zhì)得,又由正方體中, 分別是, 的中點(diǎn),易得,則 ,由線面垂直的判定定理,可得平面,進(jìn)而由面面垂直的判定定理,可得平面平面;(2)設(shè)的交點(diǎn)是,連接, ,由線面平行的性質(zhì)定理,我們易由平面, 平面,平面平面,得,再由平行線分線段成比例定理,得到線段的比.

試題解析:(1)證明:連接,則,又分別是的中點(diǎn),

所以,所以,因為是正方體,

所以平面,因為平面,所以,

因為,所以平面。

(2)設(shè)的交點(diǎn)是,連接,

因為平面平面,平面平面,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,MPA上的點(diǎn),為正三角形,,

1)求證:平面平面PAC

2)若,平面BPC,求證:點(diǎn)M為線段PA的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(單位:分.百分制,均為整數(shù))分成,,,六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;

2)從頻率分布直方圖中,估計本次考試成績的眾數(shù)和平均數(shù);

3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績之差的絕對值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有下列四個結(jié)論:

為偶函數(shù);②的值域為;

上單調(diào)遞減;④上恰有8個零點(diǎn),

其中所有正確結(jié)論的序號為(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,、、分別是、、的中點(diǎn),則下列說法:

平面;②;③;④平面

其中正確的命題序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個交點(diǎn),且軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線與曲線恰好有兩個不同的公共點(diǎn),則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為矩形, ,的中點(diǎn),沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),,若對任意,且,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案