【題目】已知函數(shù),
(1)用定義證明:在R上是單調(diào)減函數(shù);
(2)若是奇函數(shù),求值;
(3)在(2)的條件下,解不等式
【答案】(1)詳見解析(2)(3)
【解析】
試題分析:(1)根據(jù)單調(diào)性定義,先任取定義域內(nèi)兩個數(shù),作對應(yīng)函數(shù)值的差,通分化為因式形式,根據(jù)指數(shù)函數(shù)單調(diào)性確定大小,確定對應(yīng)因式符號,最后確定差的符號,根據(jù)單調(diào)性定義確定單調(diào)性(2)由奇函數(shù)性質(zhì)得(3)利用函數(shù)奇偶性將不等式轉(zhuǎn)化為兩個函數(shù)值大小關(guān)系,再根據(jù)單調(diào)性,轉(zhuǎn)化為對應(yīng)自變量關(guān)系,最后解不等式求出解集
試題解析:證明(1):設(shè)<,則 —
∵—>0,>0,>0.即∴在R上是單調(diào)減函數(shù)
(2)∵是奇函數(shù),∴
(3)由(1)(2)可得在R上是單調(diào)減函數(shù)且是奇函數(shù),
故所求不等式的解集為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,在x=0處的切線與直線3x+y=0平行.
(1)求f(x)的解析式;
(2)已知點A(2,m),求過點A的曲線y=f(x)的切線條數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在畫程序框圖時,如果一個框圖需要分開來畫,那么要在斷開處畫上( )
A. 流程線 B. 注釋框 C. 判斷框 D. 連接點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在,使成立,則稱為的
不動點.已知函數(shù).
(1)當(dāng)時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若f(x)的兩個不動點為,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=ax2+bx+c(a≠0)是偶函數(shù),則g(x)=ax3+bx2+cx是( )
A.奇函數(shù) B.偶函數(shù) C.非奇非偶函數(shù) D.既奇又偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動.為了解本次考試學(xué)生的某學(xué)科成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為100分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為n)進行統(tǒng)計.按照,,,, 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在,的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從成績在80分以上(含80分)的學(xué)生中隨機抽取2名學(xué)生參加“省級學(xué)科基礎(chǔ)知識競賽”,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要產(chǎn)生[-3,3]上的均勻隨機數(shù)y,現(xiàn)有[0,1]上的均勻隨機數(shù)x,則y可取為( )
A. -3x B. 3x
C. 6x-3 D. -6x-3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com