(本小題滿分13分)
如圖,在四棱錐中,底面是正方形.已知,.
(Ⅰ)求證:;
(Ⅱ)求四棱錐的體積.
科目:高中數(shù)學 來源: 題型:解答題
(本小題共13分)
如圖所示,正方形與矩形所在平面互相垂直,,點E為的中點。
(Ⅰ)求證:
(Ⅱ) 求證:
(Ⅲ)在線段AB上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
在四棱錐中,//,, ,平面,.
(Ⅰ)設平面平面,求證://;
(Ⅱ)求證:平面;
(Ⅲ)設點為線段上一點,且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分10分)
如圖,已知三棱錐O-ABC的側棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
圖1,平面四邊形關于直線對稱,,,.把沿折起(如圖2),使二面角的余弦值等于.
對于圖二,完成以下各小題:
(Ⅰ)求兩點間的距離;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,三棱柱中,平面,,,為的中點.
(1)求證:∥平面;
(2)求二面角的余弦值;
(3)設的中點為,問:在矩形內是否存在點,使得平面.若存在,求出點的位置,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com