【題目】如圖,在半徑為1的扇形AOB中(O為原點),.點Px,y)是上任意一點,則xy+x+y的最大值為(  )

A. B. 1 C. D.

【答案】D

【解析】

由題意知x=cosα,y=sinα,0≤α≤,則xy+x+y=sinαcosα+sinα+cosα利用三角函數(shù)有關公式化簡,即可求解最大值.

由題意知x=cosα,y=sinα,0≤α≤,

xy+x+y=sinαcosα+sinα+cosα,

t=sinα+cosα,則t2=1+2sinαcosα,

sinαcosα=,

xy+x+y=sinαcosα+sinα+cosα=

t=sinα+cosα=sin(α+),

0≤α≤≤α+,

.

∴當t=時,xy+x+y取得最大值為:

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設銳角三角形的內(nèi)角A,B,C的對邊分別為a、b、c,且sinA-cosC=cos(A-B).

(1)求B的大;

(2)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)當x≥0時,f(x)≥mx-3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得.

(1)求家庭的月儲蓄y對月收入x的線性回歸方程;

(2)判斷變量xy之間是正相關還是負相關;

(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

附:線性回歸方程中,

,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設各局比賽結果相互獨立.

1)分別求甲隊以30,31,32獲勝的概率;

2)若比賽結果為3031,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1.求甲隊得分X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(﹣1,1)上為減函數(shù)的是(  )
A.
B.y=cosx
C.y=ln(x+1)
D.y=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)fx)滿足fx)=f(2-x),當x∈[0,1]fx)=x2,則函數(shù)gx)=|sin(πx)|-fx)在區(qū)間[-1,3]上的所有零點的和為( 。

A. 6 B. 7 C. 8 D. 10

查看答案和解析>>

同步練習冊答案