若一個(gè)等差數(shù)列的前10項(xiàng)和是前5項(xiàng)和的4倍,則其首項(xiàng)與公差之比為_(kāi)______.

解析:∵S10= 4S5,

10a1+d=4×(5a1+d).

化簡(jiǎn)得d=2a1.

答案:1∶2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一個(gè)等差數(shù)列中可取出若干項(xiàng)依次構(gòu)成一個(gè)等比數(shù)列,如等差數(shù)列:1,2,3,4,5,6,7,8,9,…中的第1項(xiàng)、第2項(xiàng)、第4項(xiàng)、第8項(xiàng),…,依次構(gòu)成一個(gè)等比數(shù)列:1,2,4,8,…,這個(gè)等比數(shù)列的第3項(xiàng)是原等差數(shù)列的第4項(xiàng).若一個(gè)公差非零的等差數(shù)列{an}的第2項(xiàng)a2,第5項(xiàng)a5,第11項(xiàng)a11依次是一個(gè)等比數(shù)列的前3項(xiàng),則這個(gè)等比數(shù)列的第10項(xiàng)是原等差數(shù)列的第( 。╉(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足等式an+2Sn=3.
(1)能否在數(shù)列中找到按原來(lái)順序成等差數(shù)列的任意三項(xiàng),說(shuō)明理由;
(2)能否從數(shù)列中依次抽取一個(gè)無(wú)限多項(xiàng)的等比數(shù)列,且使它的所有項(xiàng)和S滿(mǎn)足
9
160
<S<
1
13
,如果這樣的數(shù)列存在,這樣的等比數(shù)列有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年上海卷理)(18分)

若有窮數(shù)列是正整數(shù)),滿(mǎn)足是正整數(shù),且),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”。

(1)已知數(shù)列是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且成等差數(shù)列,,試寫(xiě)出的每一項(xiàng)

(2)已知是項(xiàng)數(shù)為的對(duì)稱(chēng)數(shù)列,且構(gòu)成首項(xiàng)為50,公差為的等差數(shù)列,數(shù)列的前項(xiàng)和為,則當(dāng)為何值時(shí),取到最大值?最大值為多少?

(3)對(duì)于給定的正整數(shù),試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)的對(duì)稱(chēng)數(shù)列,使得成為數(shù)列中的連續(xù)項(xiàng);當(dāng)時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高三4月月考數(shù)學(xué)文理合卷試卷(解析版) 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無(wú)關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列的前三項(xiàng)和為,求證:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案