【題目】已知函數(shù),(,,)的部分圖像如圖所示.
(1)求函數(shù)的解析式及圖像的對稱軸方程;
(2)把函數(shù)圖像上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移個單位,得到函數(shù)的圖象,求關(guān)于x的方程在時所有的實數(shù)根之和.
【答案】(1),();(2)
【解析】
(1)根據(jù)圖像的最小正周期、最值和過點可分別確定、、,即可得到函數(shù)表達式;令,即可求出對稱軸;
(2)根據(jù)題意先求出,再利用三角函數(shù)的對稱性即可求解.
(1)由題設圖象知,最小正周期,,
最大值為,,
點在函數(shù)圖象上,即,
又 ,,從而.
故函數(shù)的解析式為.
令,,解得,即為函數(shù)圖像的對稱軸方程.
(2)依題意,得,
的周期,
在內(nèi)有2個周期.
令,所以,
即函數(shù)的對稱軸為.
又,則且,
所以在內(nèi)有4個實根.
不妨從小到大依次設為,
則,.
∴關(guān)于的方程在時所有的實數(shù)根之和為.
科目:高中數(shù)學 來源: 題型:
【題目】設為正項數(shù)列的前項和,且.數(shù)列滿足:,.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前項和;
(3)設,問是否存在整數(shù),使數(shù)列為遞增數(shù)列?若存在求的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點的圓的圓心C在x軸上,且與過原點傾斜角為30°的直線l相切.
(1)求圓C的標準方程;
(2)求直線被圓C截得的弦長;
(3)點P在直線m:上,過點P作⊙C的切線PM、PN,切點分別為M、N,求經(jīng)過P、M、N、C四點的圓所過的定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)擬在空地上建一個占地面積為2400平方米的矩形休閑廣場,按照設計要求,休閑廣場中間有兩個完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設計矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù);
(1)當時,若,求的取值范圍;
(2)若定義在上的奇函數(shù)滿足,且當,,求在上的解析式;
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對稱軸之間的距離為,將函數(shù)的圖象向左平移個單位,得到的圖象關(guān)于軸對稱,則( )
A. 函數(shù)的周期為 B. 函數(shù)圖象關(guān)于點對稱
C. 函數(shù)圖象關(guān)于直線對稱 D. 函數(shù)在上單調(diào)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,.
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意的恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,已知,且2an+1=an+1(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com