將銳角為且邊長(zhǎng)是2的菱形,沿它的對(duì)角線折成60°的二面角,則(       )

①異面直線所成角的大小是       .

②點(diǎn)到平面的距離是       .

A.90°,       B.90°,           C.60°,       D.60°,2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•合肥模擬)已知四邊形ABCD是邊長(zhǎng)為2
2
的正方形,E,F(xiàn)分別為BC,CD的中點(diǎn),沿AE,AF,EF將△ABE,△ADF,△CEF向同側(cè)折疊且與平面y1+y2=
16t
t2+32
成直二面角,連接BD.
(1)求證BD⊥AC;
(2)求面AEF 與面ABE所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將銳角為∠BAD=60°且邊長(zhǎng)是2的菱形ABCD,沿它的對(duì)角線BD折成60°的二面角,則:①異面直線ACBD所成角的大小是  . ②點(diǎn)C到平面ABD的距離是() 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角ΔABC中,角所對(duì)的邊分別為,且

(I )求角大;

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面

(2)設(shè)二面角的平面角為,若,求線段長(zhǎng)的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù)

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥市2010屆高三第四次模擬(理) 題型:解答題

 

已知四邊形是邊長(zhǎng)為的正方形,分別為的中點(diǎn),沿向同側(cè)折疊且與平面成直二面角,連接

(1)求證;

(2)求平面與平面所成銳角的余弦值。

                                                                                                                    

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案