精英家教網(wǎng)如圖,直角梯形ABCD繞直線AD旋轉(zhuǎn)一周形成的曲面所圍成的幾何體是
 
分析:根據(jù)ABCD為直角梯形和圓臺的定義與性質(zhì),可得題中四邊形經(jīng)過旋轉(zhuǎn)形成的曲面所圍成的幾何體是一個圓臺.
解答:解:根據(jù)題意,將直角梯形ABCD繞直線AD旋轉(zhuǎn)一周,可得以AD為軸的一個圓臺.
線段CD經(jīng)過旋轉(zhuǎn),構(gòu)成以D為圓心、CD長為半徑的圓及其內(nèi)部,形成圓臺的上底面;線段AB經(jīng)過旋轉(zhuǎn),構(gòu)成以A為圓心、AB長為半徑的圓及其內(nèi)部,形成圓臺的上底面;線段BC經(jīng)過旋轉(zhuǎn),形成的曲面構(gòu)成圓臺的側(cè)面.
故答案為:圓臺
點評:本題給出直角梯形圍繞它的直角腰旋轉(zhuǎn)一周,求圍成的曲面構(gòu)成的幾何體.著重考查了直角梯形的性質(zhì)、圓臺的定義與性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2014•宜賓一模)如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的
12
.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州一模)如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省南昌市高三第二次模擬測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點,且EF∥AB,AD =2AE =2AB = 4AF= 4,將四邊形EFCD沿EF折起使AE=AD.

(1)求證:AF∥平面CBD;

(2)求平面CBD與平面ABFE夾角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省惠州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年寧夏銀川市賀蘭一中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=PB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案