17.已知橢圓C:x2+2y2=8,是否存在斜率為1的直線l,使l被圓C截得的弦AB為直徑的圓經(jīng)過原點(diǎn),若存在,求出直線l的方程;若不存在,說明理由.

分析 假設(shè)存在斜率為1的直線l,設(shè)l的方程為y=x+m,代入橢圓方程,由韋達(dá)定理,及向量數(shù)量積的坐標(biāo)運(yùn)算求得$m=±\frac{{4\sqrt{3}}}{3}$$∈[{-2\sqrt{3},2\sqrt{3}}]$,故存在這樣的直線l.

解答 解:假設(shè)存在斜率為1的直線l,使l被橢圓C截得的弦AB為直徑的圓過原點(diǎn),
設(shè)l的方程為y=x+m,A(x1,y1),B(x2,y2),
由OA⊥OB知,$\overrightarrow{OA}•\overrightarrow{OB}=0$,即x1x2+y1y2=0.
由$\left\{\begin{array}{l}y=x+m\\{x^2}+2{y^2}=8\end{array}\right.$,整理得3x2+4mx+2m2-8=0,
∵△=16m2-4×3×(2m2-8)=-8m2+96≥0,得$-2\sqrt{3}≤m≤2\sqrt{3}$,
∴${x_1}+{x_2}=\frac{-4m}{3}$,${x_1}{x_2}=\frac{{2{m^2}-8}}{3}$,
${y_1}{y_2}={x_1}{x_2}+m({x_1}+{x_2})+{m^2}=\frac{{{m^2}-8}}{3}$,
${x_1}{x_2}+{y_1}{y_2}=\frac{{3{m^2}-16}}{3}=0$,
解得:$m=±\frac{{4\sqrt{3}}}{3}$$∈[{-2\sqrt{3},2\sqrt{3}}]$,
故直線l存在,方程為$y=x±\frac{{4\sqrt{3}}}{3}$.

點(diǎn)評 本題考查直線與橢圓的位置關(guān)系,韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如果函數(shù)f(x)滿足:在定義域D內(nèi)存在x0,使得對于給定常數(shù)t,有f(x0+t)=f(x0)•f(t)成立,則稱f(x)為其定義域上的t級分配函數(shù).研究下列問題:
(1)判斷函數(shù)f(x)=2x和g(x)=$\frac{2}{x}$是否為1級分配函數(shù)?說明理由;
(2)問函數(shù)φ(x)=)$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)能否成為2級分配函數(shù),若能,則求出參數(shù)a的取值范圍;若不能請說明理由;
(3)討論是否存在實(shí)數(shù)a,使得對任意常數(shù)t(t∈R)函數(shù)φ(x)=$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)都是其定義域上的t級分配函數(shù),若存在,求出參數(shù)a的取值范圍,若不能請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,已知$cosA=\frac{3}{5},cosB=\frac{5}{13}$,AC=3,則AB=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是C1D的中點(diǎn),P是棱CC1所在直線上的動點(diǎn).則下列三個(gè)命題:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正確命題的個(gè)數(shù)有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=|log3x|,若函數(shù)y=f(x)-m有兩個(gè)不同的零點(diǎn)a,b,則( 。
A.a+b=1B.a+b=3mC.ab=1D.b=am

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知p:x≤-1,q:a≤x<a+2,若q是p的充分不必要條件,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1]B.[3,+∞)C.(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a22=37,S22=352.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n+3}•{a}_{n+4}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,且a≠b,則$\frac{sinC(bcosA-acosB)}{asinA-bsinB}$=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.狄利克雷是德國著名數(shù)學(xué)家,函數(shù)D(x)=$\left\{\begin{array}{l}{1,x為有理數(shù)}\\{0,x為無理數(shù)}\end{array}\right.$被稱為狄利克雷函數(shù),下面給出關(guān)于狄利克雷函數(shù)D(x)的五個(gè)結(jié)論:
①若x是無理數(shù),則D(D(x))=0;
②函數(shù)D(x)的值域是[0,1];
③函數(shù)D(x)偶函數(shù);
④若T≠0且T為有理數(shù),則D(x+T)=D(x)對任意的x∈R恒成立;
⑤存在不同的三個(gè)點(diǎn)A(x1,D(x1)),B(x2,D(x2)),C(x3,D(x3)),使得△ABC為等邊角形.
其中正確結(jié)論的序號是②③④.

查看答案和解析>>

同步練習(xí)冊答案