如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大小;
(Ⅲ)當(dāng)的長(zhǎng)為何值時(shí),平面與平面所成的銳二面角的大小為?
(Ⅰ)平面平面,平面
平面平面平面(II)(Ⅲ)
解析試題分析:(I)證明:平面平面,,
平面平面=,
平面.
平面,,
又為圓的直徑,,
平面.
平面,平面平面………4分
(II)根據(jù)(Ⅰ)的證明,有平面,
為在平面內(nèi)的射影,
因此,為直線與平面所成的角 ……………6分
,四邊形為等腰梯形,
過(guò)點(diǎn)作,交于.
,,則.
在中,根據(jù)射影定理,得.
,.
直線與平面所成角的大小為. …………8分
(Ⅲ)設(shè)中點(diǎn)為,以為坐標(biāo)原點(diǎn),、、方向分別為軸、軸、 軸方向建立空間直角坐標(biāo)系(如圖).設(shè),則點(diǎn)的坐標(biāo)為則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分)
如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=,D是A1B1中點(diǎn).
(1)求證:C1D⊥AB1 ;
(2)當(dāng)點(diǎn)F在BB1上什么位置時(shí),會(huì)使得AB1⊥平面C1DF?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, ,且點(diǎn)滿足 .
(1)證明:平面 .
(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置,若不存在請(qǐng)說(shuō)明理由 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱中,平面,,,為的中點(diǎn).
(1)求證:∥平面;
(2)求二面角的余弦值;
(3)設(shè)的中點(diǎn)為,問(wèn):在矩形內(nèi)是否存在點(diǎn),使得平面.若存在,求出點(diǎn)的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)如圖所示,在三棱柱中,點(diǎn)為棱的中點(diǎn).
(1)求證:.
(2)若三棱柱為直三棱柱,且各棱長(zhǎng)均為,求異面直線與所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.
(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(diǎn)(端點(diǎn)除外),滿足.()
①求證:對(duì)于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點(diǎn),SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com