如圖,經(jīng)過⊙O上的點(diǎn) A的切線和弦 BC的延長(zhǎng)線相交于點(diǎn) P,若∠CAP=40°,∠ACP=100°,則
∠BAC所對(duì)的弧的度數(shù)為( )

A.40°
B.100°
C.120°
D.30°
【答案】分析:由已知中經(jīng)過⊙O上的點(diǎn) A的切線和弦 BC的延長(zhǎng)線相交于點(diǎn) P,若∠CAP=40°,∠ACP=100°,根據(jù)弦切角定理及三角形外角的性質(zhì),我們易求出∠BAC=60°,然后再利用圓周角定理,即可得到答案.
解答:解:∵PA為圓O的切線,
故∠CAP=∠B=40°,
又∵∠ACP=100°,
∴∠BAC=60°
則∠BAC所對(duì)的弧的度數(shù)為120°
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是弦切角定理,圓周角定理及三角形外角的性質(zhì),其中易忽略所求為∠BAC所對(duì)的弧的度數(shù),而錯(cuò)答為60°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、如圖,經(jīng)過⊙O上的點(diǎn) A的切線和弦 BC的延長(zhǎng)線相交于點(diǎn) P,若∠CAP=40°,∠ACP=100°,則
∠BAC所對(duì)的弧的度數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,直線OB交⊙O于點(diǎn)E,D,連接EC,CD.
(I)試判斷直線AB與⊙O的位置關(guān)系,并加以證明;
(Ⅱ)若tanE=
12
,⊙O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線D經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,直線OB交⊙O于點(diǎn)E、D,連接EC,CD.若tanE=
12
,⊙O上的半徑為3,則OA的長(zhǎng)為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,經(jīng)過⊙O上的點(diǎn) A的切線和弦 BC的延長(zhǎng)線相交于點(diǎn) P,若∠CAP=40°,∠ACP=100°,則
∠BAC所對(duì)的弧的度數(shù)為


  1. A.
    40°
  2. B.
    100°
  3. C.
    120°
  4. D.
    30°

查看答案和解析>>

同步練習(xí)冊(cè)答案